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ABSTRACT

Numerical Analysis of Orbit Prediction Errors of LAPAN’s Satellites

by

Prana Paramartha Rao

Triwanto Simanjuntak, PhD, Advisor

Indonesia’s space agency organization named LAPAN had also launched several
satellites to orbit the Earth. They are there for several reasons, from Earth moni-
toring to the measurement of the Earth’s magnetic field. These missions that they
have would be useless if there is no means of keeping track of the satellites. So
there is an apparent need for determining the whereabouts of the satellites that
orbit the Earth. Orbit determination system that is conventionally used is the
Two-Line Elements (TLE) which only gives non-so frequent updates of the satel-
lites’ whereabout. Propagation methods are then used to compensate for this lack
of updates, and to name some of the propagation methods there are the idealized
two-body propagation, two-body + J2 that considers the Earth oblateness, and the
more complex SGP4 propagation method.

The focus of this research is to see how the different propagation methods would
behave when applied to the satellites’ that are owned by LAPAN, for which they
are orbiting in the Low-Earth Orbit and have an almost perfectly circular orbit.
Furthermore, the propagation results would then be compared to the observed val-
ues in the TLE historical data of each satellite. The evaluated values would then be
analyzed using some statistical method of analyzing, linear regression and R2 cor-
relation, to see how the errors in the orbital elements and the state vectors behave
over the propagation period. Based on how the propagation method generally im-
plies, the errors should be in the acceptable region especially for the SGP4. What
that means is that the error would be relatively small in respect to the historical
data, and its behavior would increase at a small value over time.

Keyword: Two-Line Elements, Satellites, Orbit Determination, Orbit Predic-
tion Errors
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CHAPTER 1

INTRODUCTION

1.1 Background

Lembaga Penerbangan dan Antariksa Nasional or LAPAN is a Space Agency Or-
ganization, accountable to the President through the Minister responsible for gov-
ernment affairs in the field of research and technology. Historically, with the task
given to LAPAN, they have done research on rockets, remote sensing, satellites,
and space sciences for decades. Regarding satellite innovation, LAPAN currently
operates and owns three satellites. The first satellite is the LAPAN-TUBSAT /
LAPAN-A1, the second one is LAPAN-ORARI / LAPAN-A2, and the third one is
LAPAN-IPB / LAPAN-A3; All of them are orbiting within the Low-Earth Orbit
or LEO for short.

All of those satellites are up there with their own specific reasons, from Earth
monitoring, communications, to the measurement of the Earth’s magnetic field.
These missions are useless if there are no means of keeping track of the satellites’
whereabout, preferably, at all times. But, those satellites are also not equipped with
any on board orbit determination system, such as GPS. In other words, LAPAN
uses other means to keep their satellites in surveillance. The most common way of
determining the satellite’s orbit, which is also implemented by LAPAN, is to utilize
Two Line Elements (TLE) data that is publicly available and is provided by the
North American Aerospace Defense Command (NORAD).

The TLE set gives an encoded list of orbital elements of Earth-orbiting objects
only at a given point of time. That means, rather than giving a continuous or real-
time feed of the satellites’ whereabout, the updates of the TLEs of satellites might
vary from hours to days between updates. This does create one or two problems,
that are mainly in regards of the accuracy, but the common way to compensate
this is to predict the future position of the satellites from the latest update of the
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TLE. But of course, The prediction only gives the value of position of the satellite
to some degree of accuracy.

There are many kinds of prediction methods, or commonly phrased as prop-
agation method, that can be used. Varying from the idealized, that are more of
an educational purpose kind of prediction, to the complex ones that considers the
complexity of the events that occurs in space. The ones that are used commonly for
back of the envelop calculation is the two-body propagation method. With some
additional consideration of, say, the Earth’s zonal harmonic, the two-body propa-
gation method becomes more complex. And the one that are most commonly and
recommended to be used because the model considers quite a lot of disturbances
is the Simplified General Perturbation (SGP4) propagation model.

Back to what was stated, those propagation models will will only be accurate
to some degree of accuracy. For better or worse, the parameters of propagation
method are continuously updated with the update of the TLE. One main reason
is to keep the error to a minimum value due to the fact that the TLE itself gave
off errors in the observation or even in the generation of the TLE itself. Although,
the errors in the TLE is not the one that the author has interest in, rather, the
errors in the propagation intrigues the author to analyze how different propagation
methods would differ from the "actual" value that are given within the TLE. That
said, with this study, the author intended to find and create a baseline with the
error analysis in a hope for further improvement in regards to orbit analysis and
minimization of error in propagation.

1.2 Objective of Research

The main goal of this research is henceforth to create a baseline of analysis on
how different propagation methods, and specifically the error value between the
propagation methods and the "actual" value of a historical data provided by NO-
RAD. Along the way of doing so there are some side goals that can and should be
achieved:

1. Utilizing the satellites’ TLE historical data gathered from NORAD for pre-
liminary orbit determination; and
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2. Building numerical models of the different propagation models– Two-Body,
Two-Body + J2, and SGP4, and also the method in using the models;

1.3 Significant of Study

1. This study may and presumably can be utilized and be implemented for a
more extensive orbital analysis for LAPAN’s satellites.

2. This study may also become a baseline for further analysis on different satel-
lites with different types of orbits.

3. The orbit propagation error from this study may also be used to a rough plan
on optimization on the propagation methods.

1.4 Scope and Limitation

1. The satellites that were used as the subject of the research were limited to
the ones operated by LAPAN.

2. The research only used the publicly accessible data, namely Two-Line Ele-
ments, for which it is used to as the ”actual” value of the state of the satellites.

3. The TLE are not error-free per se. That is because it might encounter error
in the observation or even the generation of the TLE itself. But those errors
are neglected for they are out of the author’s comprehension.

4. The raw data that are used are of different sample sizes for each satellite.

5. The research analyzed how different propagation models– Two-Body, Two-
Body + J2, and SGP4, and the use of them behave over time.

6. The Two-Body and Two-Body + J2 propagation models and the method of
using the models were set and within the control of the author.

7. The SGP4 model however, due to the complexity of the dynamical model,
was "outsourced" with an already existing package called cysgp4.
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8. The research analyzed how does the errors of propagation behave with respect
to the actual values over time, all respective to each historical data.

9. The error analysis used were only the linear regression analysis and the
Fourier analysis for a more straightforward and intuitive sense of behavior.
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CHAPTER 2

LITERATURE REVIEW

2.1 Two-Body Problem

An understanding of the two-body problem is crucial in astrodynamics, for it is
a useful “rough” starting point of calculations for more complex problems. In the
two-body problem, it is assumed that the only force acting on either of the masses
is that of gravitational attraction of which is applied by the other mass. What
it means is that there are no other forces, such as the gravitational forces from
other bodies nor other perturbation forces, other than the two gravitational force
of the two masses taken into account in this problem. The Newton’s Law of motion
and Newton’s law of gravitation, especially when combined with Kepler’s Law, are
some powerful starting points for orbital problems, especially the ones that will be
talked about later.

2.1.1 Kepler’s Law

Johannes Kepler, 1571-1630, was the one responsible for the formulation of the laws
of planetary motion. The first two laws that he formulated was within the com-
pletion of his Astronomia Nova in 1609. In 1619, Kepler published his Harmonices
Mundi Libri V where he buried hist third law within other theorems he came out
with. The three laws, of which he wrote separately through out his research, states
as the following:

1. The orbit of each planet is an ellipse with the Sun at one focus;

2. The line joining the planet to the Sun sweeps out equal areas in equal times;
and

5/209



NUMERICAL ANALYSIS OF ORBIT PREDICTION ERRORS OF LAPAN’S SATELLITES

3. The square of the period of a planet is proportional to the cube of its semi-
major axis.

The first law gives an information that planets, in fact all objects in space, trav-
els in an elliptical path or conic section-like path, namely circles, ellipses, parabolas,
and hyperbolas, with the Sun or other central body at one focus. Note that every
conic section has two foci, where one of it reserves as the gravitational center of
attraction called the primary focus. For circles the two foci coincides in the center
of the orbital plane. From Fig. 2.1, it can be noticed that hyperbolas and parabolas
are open orbits because they do not repeat their position, while circles and ellipses
are closed orbits because they tend to retrace their path over time.

Figure 2.1: Conic Sections (McClain, 2013)

The second law describes the speed of which the orbiting body moves through
its path. As it is getting closer to the main attracting body, the speed of the orbiting
object would increase and would achieve its maximum orbiting speed at the closest
point to the attracting body or periapsis, When the orbiting body is "catapulted"
and moving further from the main attracting body, the orbiting speed of the object
would decrease and would achieve its lowest speed at the furthest point of its orbit
or apoapsis, as shown in Fig. 2.2. This phenomenon explains the equal areas at
equal time of observation.
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Figure 2.2: Kepler’s 2nd Law representation (Kepler’s Laws of
Planetary Motion, 2020)

The third law imposed that the squared orbital period of a planet is proportional
to the cube of its semimajor axis (T 2 ∝ a3). Now, getting a little bit of a sneak
peek to the next subsection, the third law of Kepler can be proven with the help
of the Newton’s Universal Law of Gravitation, where the equation would lead to
this,

T 2 =
4π2

GM
a3 (2.1)

2.1.2 Newton’s Universal Law of Gravitation

Kepler’s Law was the initial statement for the expansion of the orbital motion.
Newton then tied it all up together nicely with his Universal Law of Gravitation
in his Philosophiae Naturalis Principia Mathematica, in which he stated that any
masses would attract any other mass with a force that is acting on the line in which
the both masses are intersecting. The magnitude of the force is proportional to
the product of the two masses and inversely proportional to the square of their
distance. The statement could be written as,

~F21 = −GM1M2

r2
r̂ (2.2)

where,

• ~F21, is the force acting on M2 due to M1;

• G, is the universal gravitational constant;
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• M1 and M2, are the two attracting body, mass 1 and mass 2;

• r, is the distance between the two masses; and

• r̂, is the unit vector of the distance between the two masses.

Figure 2.3: The visualization of Newton’s Universal Law of Grav-
itation (Newton’s Universal Law of Gravity , n.d.)

As shown in the Fig. 2.3 and also from the Eq. 2.2, it can be seen that in the
system, both of the masses would experience the same amount of force. The only
difference is that the sign of which the force vector is acting.

2.1.3 Two-Body Equation

First of all, an assumption of a coordinate system or reference frame is needed to
be defined, for it will create an easier analysis of the two-body problem. That said,
the inertial reference frame, a frame or a system that is fixed in inertial space, is
needed for the derivation of the two-body equation of motion. Let the illustration
in the Fig. 2.4 be the inertial frame of reference.
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Figure 2.4: Geometry of two bodies in an inertial frame of reference
(McClain, 2013)

Here are the details on the inertial system,

• X̂, Ŷ , Ẑ, are the axis of the inertial coordinate system;

• Î, Ĵ , K̂, are the axis the geocentric coordinate system;

• ~rsat, is the position vector of the satellite in reference to the inertial reference
frame;

• ~r⊕, is the position vector of the Earth in reference to the inertial reference
frame;

• m⊕ ,is the mass of the Earth; and

• msat, is the mass of the satellite.

Per what have been mentioned before, the Two-Body equation utilizes the New-
ton’s Law of Motion and the Newton’s Universal Law of Gravitation. Now, taking
the geometry in reference to Fig. 2.4, we can derive the Two-Body equation. Let
us identify the forces acting on the system, for that we took the Newton’s Law of
Universal Gravitation and write it as such,

~F⊕
sat = −

Gm⊕msat

r2
~r

r
(2.3)

where,
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• ~F⊕
sat, is the force acting on the msat due to the m⊕;

• G, is the gravitational constant;

• m⊕, is the mass of the Earth;

• msat, is the mass of the satellite;

• ~r, is the position vector of the msat relative to m⊕; and

• r, is the distance of the msat relative to m⊕.

The ~r, as mentioned, is the position vector of the satellite relative to the Earth,
for it is not to be confusing, here is how the vector from the Earth to the satellite
looks like in mathematical form,

~r⊕ sat = ~rsat − r⊕ (2.4)

The convenience of defining an inertial frame of reference is that it allows dif-
ferentiation of the vectors without considering the derivatives of each axis of the
coordinate system. That said, the acceleration of the satellite relative to the Earth
can be found in a quite straightforward manner with the following equation,

~̈r⊕ sat = ~̈rsat − ~̈r⊕ (2.5)

and taking the Newton’s Second Law of Motion, shown here,

Σ~F =
d(m~v)

dt
= m~a (2.6)

in combination with Newton’s Universal Law of Gravitation, will permit us to
directly write the inertial force on the satellite as the following,

~Fgsat = msat~̈rsat = −
Gm⊕msat

r2
~r

r
(2.7)

and the force on the Earth as,

~Fg⊕ = m⊕~̈r⊕ =
Gm⊕msat

r2
~r

r
(2.8)
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Per Newton’s Third Law of Motion, to every action there is always opposed
an equal reaction, the magnitude forces acting on both satellite and the Earth are
the same, though the difference is only the sign. In this case, the satellite receive
the negative sign and the Earth receive the positive sign. Now, grouping these two
equations and solve them for the relative acceleration, ~̈r, gives,

~̈r = −
Gm⊕
r2

~r

r
− Gmsat

r2
~r

r
(2.9)

or

~̈r = −
G(m⊕ +msat)

r2
~r

r
(2.10)

Here is where the next assumption takes place. Assume that the mass of the
Earth is much bigger, by many orders of magnitudes, in comparison to that of the
satellite. As a result the sum of the two masses would just virtually be the mass
of the Earth itself. The equation then could be rewritten into,

~̈r = −
Gm⊕
r2

~r

r
(2.11)

or

~̈r = − µ
r2
~r

r
(2.12)

where µ is the gravitational parameter of the referenced "celestial body", (McClain,
2013)

µ = GM (2.13)

With the assumption of the sum of both masses are equal to the Earth’s mass,
the inertial frame of reference for both bodies are shifted, virtually, to the center
of the Earth. This creates a frame of reference that is going to be used within this
thesis that is the Earth Centered Inertial (ECI). Now for the ECI, the Ẑ is within
the line joining the two poles of the Earth pointing north, the X̂ axis is pointing
to the what it is called vernal equinox (two points in space where the Sun and
the Earth equatorial plane intersect), and the Ŷ axis completes the right-handed
orthogonal system, that is 90◦ to the East.
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Figure 2.5: Earth Centered Inertial coordinate system (T. Kelso,
n.d.-b)

2.2 Satellite State Representation

One way to define the state of a satellite is through its position and the velocity, in
terms of vector with respect to a reference frame just like in the previous sections,
Fig. 2.5. the vectors can be written as shown,

~r = rxÎ + ryĴ + rzK̂

~v = vxÎ + vyĴ + vzK̂

Just like any applications that uses these two parameters, these two vectors are
used to predict or determine the displacement of the satellite at a point of time.
However, there are other parameters of state representation that are a little bit more
understandable, and they can also be converted from the position vector and the
velocity vector. These quantities may take on many equivalent forms. Regardless
of their form, the collection is usually referred to as Element Sets (McClain, 2013).
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Element Sets are typically associated with scalar magnitude and angular orbital
representations called orbital elements. Element Sets have many forms due to the
variety of the orbital elements. These orbital elements are define in six quantities
required to describe the orbit’s size, shape, and orientation as well as the satellite’s
whereabout at an instantaneous point of time. The most common element set is the
Classical Orbital Elements. The six quantities described in the Classical Orbital
Elements are:

• Semimajor axis, a;

• Eccentricity, e;

• Inclination, i;

• Right Ascension of the Ascending Node (RAAN), Ω;

• Argument of Perigee (AoP), ω; and

• True Anomaly, ν.

Several other element sets have also been developed for convenience, and one
of them is the Two-Line Element sets, which would be this thesis’ interest source
of data, that will be explained later on in this section.

Figure 2.6: Classical Orbital Elements (Tombasco, 2011)
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2.2.1 Semimajor Axis, a

Semimajor axis defines the size of the orbit. it is the sum of the length of the
apoapsis, ra, and the length of periapsis, rp, divided by two. Note here that the
periapsis is the closest point of the orbit and the apoapsis is the furthest point of
the orbit, both in reference to a central body.

a =
ra + rp

2
(2.14)

The semimajor axis can also be calculated using the vis-viva equation that
describes the interaction of the orbiting body with the central body with the con-
sideration of the energy (McClain, 2013).

a = (
2

r
− v2

µ
)−1 (2.15)

2.2.2 Eccentricity, e

Eccentricity defines the shape of the orbit. It is a fixed constant for each type of
conic section (circle, ellipse, parabola, and hyperbola) and it ranges from zero to
one, though with some exceptions. It never gives a negative value. if the value
is equal to zero then it is a circular orbit, if the value is between zero and one
then the orbit is an elliptical orbit, if the value is equal to one then the orbit is
parabolic orbit, but if the value is greater than one then the orbit is hyperbolic
orbit. Eccentricity can also be defined as the ratio between the distance of the two
foci and the semimajor axis, though it is only true for elliptical orbits (Describing
Orbits , 2018),

e =
c

a
(2.16)

where c is the distance between the two foci. For all conic sections, the ec-
centricity can be obtained from the magnitude of the eccentricity vector, that is
(McClain, 2013),

~e =
(~v − µ

r
)~r − (~r · ~v)~v

µ
, e = |~e| (2.17)
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2.2.3 Inclination, i

Inclination defines the tilt of the orbital plane. The tilt angle is measured from the
equatorial plane of the central body to the orbital plane. It ranges from 0◦ to 180◦.
For all orbits that are inclined at 0◦ and 180◦ are called equatorial orbits, everything
in between is called inclined orbit. The inclination of the orbit also determines the
direction of the satellite revolving around the central body, say the Earth. If the
inclination is between 0◦ and 90◦, then the motion is in sync with the Earth or
called prograde orbits. If the inclination is between 90◦ and 180◦, then the motion
of the satellite is opposing the rotation of the Earth or called retrograde orbits, and
inclination of 90◦ is called polar orbit. Inclination can be written mathematically
as (McClain, 2013),

cos(i) =
K̂ · ~h
|K̂||~h|

(2.18)

where ~h is the specific angular momentum in vector form and K̂ is the unit
vector of K axis. the ~h can be obtained by the cross product of position vector ~r
and the velocity vector ~v.

2.2.4 Right Ascension of the Ascending Node (RAAN), Ω

Right Ascension of the Ascending Node or RAAN is the angle that describes the
orientation of the orbital plane in space. It is the angle measured in the equatorial
plane measured eastward as positive from the Î unit vector or the X axis of the
celestial body to the location of which the satellite’s ascending node, or the point in
which the orbital plane intersects the equatorial plane. The ascending node itself
is whenever the satellite passes the equatorial plane from south to north, hence the
name ascending. In the case of equatorial orbit, the RAAN is undefined. The angle
ranges from 0◦ to 360◦. RAAN can be written mathematically as (McClain, 2013),

cos(Ω) =
Î · ~n
|Î||~n|

(2.19)
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where ~n is the node vector and Î is the unit vector of the I axis. The ~n can be
obtained by crossing the unit vector of K and the the specific angular momentum
~h.

2.2.5 Argument of Periapsis (AoP), ω

Argument of periapsis defines the location of the periapsis of the orbit. It is an
angle measured from the ascending node to the periapsis in the direction of the
motion of the satellite. The angle ranges from 0◦ to 360◦. a perfectly circular
or an equatorial orbit do not have an argument of periapsis due to the fact that
they don’t have periapsis or ascending node. Argument of periapsis can be written
mathematically as (McClain, 2013),

cos(ω) =
~n · ~e
|~n||~e|

(2.20)

2.2.6 True Anomaly, ν

True anomaly defines the location of the satellite in the orbit at an instant of
time of observation. It is the angle measured from the periapsis to the location of
the satellite in the motion of the satellite. It is undefined for a perfectly circular
orbit due to the fact that it has no periapsis, though one point in an orbit can be
defined as the referenced periapsis. True anomaly can be written mathematically
as (McClain, 2013),

cos(ν) =
~e · ~r
|~e||~r|

(2.21)
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Figure 2.7: Classical orbital elements representation(Tombasco,
2011)

2.3 Space Surveillance

A need of a surveillance system for all of the orbiting objects, among other, to
avoid unwanted events and to determine the whereabout of all orbiting objects has
become the number one importance for all space mission. To give a perspective, the
number of man-made objects that orbits the Earth kept on increasing throughout
time, creating a hazardous space in which the objects are orbiting. In addition
to that, a more apparent importance of space surveillance comes when there is an
unavailability of the satellite’s location in space. That unavailability would make
any communication virtually impossible, making the satellites useless per their
purpose to be orbiting the Earth (Greene, 2009).

One of the long-standing organization of several space surveillance is the Space
Control Center (SCC), operated by NORAD. They are responsible for the detec-
tion, identification, and daily tracking of all man-made objects in space. When an
Earth orbiting object is detected, NORAD releases a set of data of that particular
detected orbiting object in the form of Two-Line Element (TLE) sets. In doing
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so, they utilize the traditional and phased-array radar systems, as well as some
electro-optical methods (T. S. Kelso, n.d.).

The traditional/conventional radar system
Operating in bistatic mode, meaning that one antenna transmits a pulse
another antenna receives the return pulse (T. S. Kelso, n.d.).

The phased-array radar system
Scan a large volume of space due to the fact that there are no mechanically
moving parts. Instead, they are composed of thousands of small elements
that can be phased to electronically steer the antenna. (T. S. Kelso, n.d.).

The Ground-Based Electro-Optical Deep Space Surveillance
Composed of three telescopes to image objects in space 10,000 times dimmer
than that of the naked eyes are capable of. Computer processing removes
the stars and other background light sources to produce a clear observations
(T. S. Kelso, n.d.).

Those three methods of observations generate up to 80,000 satellite observations
per day. Note that currently there are 47,381 catalogued objects with 22,095 of
them orbiting the Earth and 3,674 of which are the operational satellites (SATCAT
Boxscore, n.d.). Though 80,000 observations per day may seem like a rather big
number of observations, it is still far from achieving a continuous let alone real-
time observation and orbit determination of all Earth-orbiting objects. The main
reason for this is because of the geographical distributions of ground-based sensors,
see Fig. 2.8. The solution that the SSN implemented to this is that they use a
predictive technique in monitoring the catalog of the space objects. What it means
that they periodically making sure that each object is where it is predicted to be
and they will generate a new set of elements when they are not where they are
predicted to be (T. S. Kelso, n.d.).
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Figure 2.8: Space surveillance network observation location
(T. S. Kelso, n.d.)

2.4 Two-Line Elements

Two-Line Elements or TLE, as mentioned before, is a set of state description data
at a given point of time upon the detection of an Earth orbiting object. TLE
data consists of two 69 characters lines of data which can be used to determine the
state– the whereabout in term of orbital elements, of an Earth-orbiting object for
an instantaneous point of time, or so it is called the epoch. The TLE, as mentioned
also before, contains a lot of information for the use of determining the state of the
Earth-orbiting object.

Recalling back in regards of all Earth-orbiting objects are in surveillance, every
day, by NORAD and the observation is released as an ephemeris data in a form of
TLE. The TLE generation, in terms of how frequent they are generated, for each
objects are different. The updates are not base on a fixed time table, rather the
frequency of updates is dependent on various factors. As an example, satellites
within the Low-Earth orbit would receive a more frequent updates, due to the
somewhat unpredictable atmospheric drag which may cause the satellite to alter
the orbit ever so slightly.

TLE contains, among others, the information regarding the mean orbital ele-
ments of the Earth-orbiting objects. The "mean" here is resulted from the removal
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of the short-periodic and long-periodic variations (Greene, 2009). The mean values
has an effect on the element, thus the set becomes just slightly different from what
have been listed in the section 2.2. There are two classical orbital elements that are
not listed inside the TLE, the semimajor axis, a and the true anomaly, ν. However,
it is easily obtained from converting some elements inside the TLE into the desired
classical orbital elements. The details on the conversion are in the next chapter.

2.4.1 Format Description

TLE is available for the public, which means that it is relatively easy to access.
The TLE can be acquired from https://www.space-track.org/ or https://

celestrak.com/. both of which give the same TLE, though the procedures are
slightly different. the TLE can be acquired in two ways. One that is the most
updated TLE of the satellite. The other one is the set of TLEs of some period of
time or historical data. the first one is generally available on the website’s home
page. the latter one should be requested first beforehand through a special data
request. TLE, as stated before, is made out of two 69 character lines per ephemeris.
In general, the only valid characters of the TLE is any number between 0-9, the
character between A-Z, the spaces, the periods, and the plus and minus signs– and
all of these characters are also valid within the specific columns. The description on
the content of the TLE sets will be given in the following figure and the following
tables.

Figure 2.9: Two-Line Element Sets data description (Definition of
Two-line Element Set Coordinate System, 2011)
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Fields Collumns Content

1 01 - 01 Line number
2 03 - 07 Satellite catalog number
3 08 - 08 Classification (U=Unclassified, C=Classified, S=Secret)
4 10 - 11 International Designator (last two digits of launch year)
5 12 - 14 International Designator (launch number of the year)
6 15 - 17 International Designator (piece of the launch)
7 19 - 20 Epoch Year (last two digits of the year)
8 21 - 32 Epoch (day of the year and fractional portion of the day)
9 34 - 43 First Derivative of Mean Motion (Ballistic Coefficient)
10 45 - 52 Second Derivative of Mean Motion
11 54 - 61 Drag Term (Radiation Pressure Coefficient or BSTAR)
12 63 - 63 Ephemeris type
13 65 - 68 Element set number
14 69 - 69 Checksum (modulo 10)

Table 2.1: Two-Line Elements set’s line 1 format definition

Fields Collumns Content

1 01 - 01 Line number
2 03 - 07 Satellite Catalog Number
3 09 - 16 Inclination (degree)
4 18 - 25 Right Ascension of Ascending Node (degree)
5 27 - 33 Eccentricity (decimal point assumed)
6 35 - 42 Argument of Perigee (degree)
7 44 - 51 Mean Anomaly (degree)
8 53 - 63 Mean Motion (revolution per day)
9 64 - 68 Revolution Number at Epoch (revolutions)
10 69 - 69 Checksum (modulo 10)

Table 2.2: Two-Line Elements set’s line 2 format definition
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2.4.2 Accuracy and Limitation

Just like any other observation, there should be an assessment on how accurate and
precise the observation is. In this case, there are things that affects the accuracy
of the TLE. The sensors or equipment used to detect the satellites, the amount of
data gathered, the type of orbit the satellites’ are in, the atmospheric condition
in the space they are orbiting are some of the factors that affect the accuracy of
the TLE sets. Unfortunately, these aspects are unique with each TLE set, which
implies that the accuracy of each Earth-orbiting body is often so specific (T. Kelso,
n.d.-a).

A consistency assessment of the TLE datasets is more probable to do rather
than assessing the accuracy of the TLE itself. This implies to how well does
the particular datasets’ prediction are in accordance with those of its predecessors
dataset (T. S. Kelso, 2007). By comparing the difference of the vector magnitude of
the predictions from two successive element sets at the epoch of the newer element
set (when it should be most accurate), it is possible to gauge the consistency
between those element sets.

2.5 Satellite State Propagation

A new perspective of what was thought to be challenging or even impossible was
able to be achieved with the advancement of satellite development. From worldwide
communication, remote sensing of the Earth’s surface, to the deep space astronomy
and exploration are the examples of the advancement. These advancements would
be useless if there are no means of keeping track and communication with them.
Therefore, the knowledge of satellite tracking and orbital determination, prediction,
propagation, and trajectory correction are genuinely vital. These vital pieces of
knowledge boils down to one starting point, which is determining the satellite’s
initial state.

To be completely blunt, there are no means of keeping a continuous or real-time
tracking of satellites. However, there is one way to at least know the state of a
satellite at a given point of time, that is through the publicly available Two-Line
Elements provided by NORAD, as what the previous sections describes. The TLE,
as known now, does not update in a frequent or even a set timetable. That is
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actually enough to at least predict, using some mathematical model, the state of
the satellite in the future or the past. The mathematical model are vary from the,
relatively, simple to the ones that considers various factors that might affect the
motion of the orbiting objects, called orbit perturbations.

2.5.1 Orbit Perturbations

Another crucial foundation in astrodynamics is the study and model perturbations.
Perturbation itself are defined as the deviation of an idealized or undisturbed state
of motion. Recalling back from the two-body problem, it is assumed that the
only forces acting on the bodies are only the forces of gravity exerted by each of
the body toward one another, meaning that the motion is "idealized". The real
world, however, actually have other forces or disturbance, just like the definition
of perturbation. Now, taking account of the perturbation(s) into the two-body
problem is necessary. In a nutshell, the equation becomes (Curtis, 2014),

~̈r = − µ
r2
~r

r
+ ~p (2.22)

Note here that the ~p is the net perturbative acceleration from sources, other
than the gravitational attraction of the two-bodies. Some paper also uses ~a to
describe the perturbative acceleration.

Gravity Field

The Earth or any other celestial bodies are not perfectly spherical, they are more
like oblate spheroids, due to the fact that the celestial bodies are spinning or
rotating in its axis of rotation. That is where the centrifugal effects comes and
causes the equatorial radius of the body to be relatively larger in comparison to
the polar radius. Due to this, the gravity of the Earth is not exactly uniform for
all points on the surface, but rather varies with the latitude and the radius. This
oblateness of a shape, if you may call it, has actually one of the stronger effect on
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the satellite orbit, near the planet, and when written, the perturbation Φ is given
by the infinite series,

Φ(r, φ) =
µ

r

∞∑
k=2

Jk(
R

r
)kPk cos(φ) (2.23)

Figure 2.10: Spherical Coordinate System (Curtis, 2014)

where,

• Jk, in the equation is the zonal harmonics of the planet, that is a dimensionless
number unique to each planet;

• R, here the Equatorial radius;

• Pk, is the Legendre polynomials; and

• J , number extends to infinity, as it is an infinite series

The most significant is the J2, where the value is J2 is 0.00108263 (Curtis, 2014).
The perturbation acceleration due to J2 can be written as,

aI = −3

2

J2µR
2⊕ ~rx

r5
(1− 5~r2z

r2
) (2.24)

aJ = −3

2

J2µR
2⊕ ~ry

r5
(1− 5~r2z

r2
) (2.25)
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aK = −3

2

J2µR
2⊕~rz

r5
(3− 5~r2z

r2
) (2.26)

Atmospheric Drag

The planet’s oblateness aside, the atmospheric drag is also one of the stronger
influence on the motion of the satellite, especially orbits that are near the planet.
Despite the fact that 99% of the Earth’s atmosphere is below 100 km, the air
density at higher altitude and even though there are way less air molecules, is still
sufficient enough to cause drag considering the orbiting velocity for that altitude
itself is very high (± 7.9 km/s) (Curtis, 2014). Based on the drag equation,

D = −1

2
ρv2relCDA (2.27)

where,

• ρ, is the atmospheric density;

• A, is the frontal area of the satellite or spacecraft; and

• CD, is the dimensionless drag coefficient.

Then the acceleration for ~p can be written as,

~p = −1

2
ρvrel

(CDA
m

)
vrel (2.28)

Third-Body Perturbation

The "real world" has other celestial bodies that can effect the orbital motion of a
satellite. When another celestial body’s gravitational attraction is taken into an
account, the problem is called the three-body problem. For the Earth, one of the
celestial body that can and should be taken into an account is the gravitational
pull of the Earth’s moon, or the Sun for that matter can also be considered as
another third-body perturbation. The satellites that is in a higher orbits have
greater effects in comparison to the lowers orbits.
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Figure 2.11: Representation of other body as the third-body per-
turbation (McClain, 2013)

2.5.2 Satellite State Propagator

The propagation models make use of the current state of the satellite to predict the
state of the satellite to any given point in time of our interest. A simplification of
the prediction would be like predicting a car position within a highway where we
know the initial position and the initial velocity, also where it is heading. By that,
we would be able to predict its whereabouts in, let us just say, an hour. Similarly,
if the satellite’s initial state is known, its future state could be predicted to some
reasonable accuracy.

Of course, that is if the condition of the motion is unperturbed or idealized.
However, perturbation occurs in the path of the satellite motion. These pertur-
bations are caused by the Earth’s shape (spherical harmonics), drag, radiation,
and gravitational effects from other celestial bodies (the sun and moon generally)
(Miura, 2009). The propagation model’s job is to take those perturbation(s) into
account for it to predict the satellite state at any time of interest within some
degree of accuracy.

In accordance with the use of the propagation models, all of them represent “so-
lutions” to the equation of motion for two or more bodies. The propagation models
are also divided into four categories, namely Two-Body, General Perturbation, Spe-
cial Perturbation, and Semi-Analytical Theories (What is an Orbit Propagator? ,
2000), though this thesis will cover more on the two-body, two-body with the first
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zonal harmonic of the Earth perturbation (J2), and the general perturbation (SGP4
in specific).

Two-Body

Two-Body propagator is an exact solution to the equation of motion for two mu-
tually attracting bodies, see section 2.1.3. A two-body propagator is the ideal
modeling and for educational purposes, but should not be used for any practical
use. The Two-Body propagator considers only the force of gravity from the Earth,
just like the first section of this chapter, that is modeled as a point mass. Virtually
the orbit in an idealized system would virtually repeats its exact path. Meaning
that there would not be any changes in the orbital elements of the satellite.

The use of J2 perturbation in conjunction with the two-body propagator only
accounts for secular variations in the orbit elements due to Earth oblateness. Due
to the oblateness of the Earth the orbital elements would not be constant. The
two of the orbital elements that mainly affected by this perturbation is the RAAN
and the AoP, in other words the orbit would shift ever so slightly over time.

Simplified General Perturbation Models

The development of the Simplified General Perturbation or the SGP model series
was back in the 1963. The model includes the first three zonal harmonic for the
gravity model, and the approximation of atmospheric drag through rate of change
in mean motion, and also it does not include the effect any third body gravitational
effects (McClain, 2013). The development of the models peaked with the release
of the Simplified General Perturbation 4 (SGP4).

With the introduction of Spacetrack Report No. 3, a user compatibility survey
on space surveillance and the official users, the SGP4 propagation models’ source
code had been further optimized (Vallado, 2006). It considers secular and short-
and long-periodic variations due to Earth oblateness, solar and lunar gravitational
effects, gravitational resonance effects and orbital decay (e.g., atmospheric drag
that uses power density functions) (Greene, 2009). The models specifically relied
on the Two-Line Element (TLE) dataset, as this thesis is also relying on the TLE
dataset.
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2.5.3 Propagation Error

In doing measurement there will always be uncertainties that prevent the mea-
surement to be 100% accurate. The inevitable uncertainties that occurs in doing
measurements are what it is called the error, not to be confused with mistakes
(Taylor, 1996). The purpose of the error analysis is to study and evaluate these
inevitable uncertainties in the measurements in which to refine such measurements
in achieving an asymptotical value of that the actual or real value of an event. The
actual or real value of an event is not actually known, that is why a preliminary or
an initial observation or measurement or maybe a theoretical prediction is needed
as a guideline for which purpose is to approximate the value of an event. As stated
before, all measurement including for orbital problems, namely orbital observation,
orbital determination, and orbital prediction would encounter errors. These errors
are mainly measuring errors, modeling errors, and methodology errors (Li, 2017).

From the orbital observation point of view, which is done by NORAD by using
their means of cataloging and keeping the ephemerides of the satellites updated,
the errors are due to the particular sensors that are being used for observations.
Deviation and noise from the equipment that is used, the atmosphere of which the
observation time is in progress to the amount of data that is being collected are also
some parts of it. From that they could only acquire and optimally approximated
values of the object’s true state. The orbital determination, that is the TLEs that
are acquired from the observations, only gives the mean value of the object’s state
that is actually not the true value of the orbit due to the observation’s errors. The
error of the initial determination is then passed through to the orbital prediction,
since in predicting a future state of orbit the initial state should be defined. The
other error that is present in the orbital prediction is the modeling of the prediction
itself.
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Figure 2.12: Propagated initial state with its initial errors (Li,
2017)

2.5.4 Regression Analysis

Regression analysis is one of the most common analysis that is used to analyze
the, hypothetical, behavior and relation between variables. Regression analysis is
divided into three categories, namely, linear regression, multiple linear regression,
and nonlinear regression. The common ones to be used for relatively simple data
sets are the linear regression analysis and the multiple linear regression analysis,
while the nonlinear regression analysis is for more complicated data sets. In re-
gression analysis there are two kind of variables to be analyzed, the first one is the
dependent variables and the second one is the dependent variables. The dependent
variable, as its name may suggest, is hypothetically said to change over the change
of the independent variable. When graphed the independent variable is depicted
as the X axis and the dependent variable is depicted as the Y axis.
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Y = β0 + β1X (2.29)

where,

• Y , is the expected value of y for a given value of x;

• β0, is the y-intercept of the regression line; and

• β1, is the slope of the line.

Figure 2.13: Linear regression analysis example plot (Regression
Analysis, n.d.)

What that means is that if the dependent variable increases with the increase
of the independent variable, the relation is named positive relation. If the depen-
dent variable decreases with the increase value of the independent variable, then
the relationship is negative relation. The relationship between the variables are
described or represented with the linear line called the regression line.
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2.5.5 Fourier Series

It is a study of a way some functions may be represented or approximated by sums
of simpler trigonometric functions. The functions are, in this case, periodic func-
tions, that is composed of harmonically related sinusoids (Howell, 2016). In other
descriptions, it also represents a periodic function by a discrete sum of complex
exponentials. Putting it into some words, it gives the main idea of an analysis
that compare the signal with an infinite sum of sines and cosines of various fre-
quencies. Fourier series itself make use of the orthogonality relationships of the
sine and cosine functions, and the equation for the series are given in the following
expression,

f(x) = a0 +
∞∑
n=1

an cos(nωx) +
∞∑
n=1

bn sin(nωx) (2.30)

where,

• f(x), is real-valued function;

• a0, an and bn, are the Fourier coefficients; and

• ω, is the frequency.

Figure 2.14: Square wave represented by different order of Fourier
series
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2.5.6 R2 Correlation

The behavior of the data does not really give too much information on how well
the model fits the data or how does the variables correlates to one another. That
means that there is a need to find a way to measures the strength of the relationship
between the two. R-squared or R2 can be used in conjunction with the linear
regression for the correlation analysis for the variables. The value of correlation is
measured on a convenient 0% – 100% scale.

Figure 2.15: High value of R2 and low value of R2 (left to right)
(Frost, n.d.)

The closer the value of R2 to 0% depicts that none of the variability of a model,
response data around its mean. While 100% on the other hand, explains all of the
variability of the model, response around its mean. The mean of the dependent
variable predicts the dependent variable as well as the regression model. R2 does
not indicate whether a regression model is adequate, a low R2 value for a good
model might occur.
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CHAPTER 3

RESEARCH METHODOLOGY

3.1 Research Outline

With this section being named Research Methodology, it has the purpose to give
an outline of what kind of approach that the author had taken in order to try
and "tackle" the problems stated in this thesis. Explicitly speaking, this chapter
gives the ever so detailed approaches in doing the thesis. Here is the list of the
approaches made by the author:

1. Problem Statement
The author formulated the initial problem based on the lack of a real-time
satellite orbit determination, for it is very essential for orbit maneuvering,
collision avoidance and accurate orbit tracking for mission purposes. In this
case the author chose three satellites, all of them owned and operated by
LAPAN, as the subjects for this thesis. The satellites then went through a
process called state propagation or orbit propagation in which the state of the
satellite would be predicted in the near or long future, all of that was for the
propagated values to be analyzed. The propagated states then evaluated with
the timestamp of the updates within the satellites’ respective TLE historical
data.

2. Literature Study
The author took upon various references such as journals, websites, and books
that are related to the fields / materials in aiding this research. For the base-
line of knowledge the author took the basic astrodynamics references on how
satellite’s state is represented, propagation method, and orbital mechanics.
In addition to that, the goal of this thesis is to analyze the errors in the
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propagation, so sufficient knowledge on the error analysis was essentials for
the author to get his hand on.

3. Computational Tools
The author used open-source programs for gathering the needed materials
for the thesis, creating mathematical models, simulations regimes, and error
analysis. The use of the open-source programs gave a massive helping hand
for the author due to the community forums of each programs that were very
helpful, and also due to the fact that the author did not have to spare a single
penny to do what stated.

4. Data Collection
The collection of data is the base building block of this thesis, for it was used
as the input and the reference values. The author did the data collection
through a publicly accessible website. In the data collection itself the author
went ahead and request all of the data of the satellites of interest for this
thesis.

5. Mathematical Model
The author build mathematical models as of the case in this thesis are the
mathematical models for the orbital elements extractions, orbital element
conversions, and orbit numerical model of the propagations. The author
constructed it with the help of the computational tool stated before, which
gave the ability to model all of them with some degree of ease. There were
also some external use of some numerical models used by the author, for they
were out of the author’s comprehension at the time this thesis was conducted.

6. Simulation
For the simulation, the author used the numerical model propagations that
the author had previously built. The author set all the common parameters
for the propagation of the satellites’ states, for which the details are stated
later in this chapter. The simulation also used one of the external numerical
model that are going to be mention in this chapter. The simulation would
be the half way, may so to say, of this thesis, for then the observation of the
propagation would be done for further analysis by the author.
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7. Error Analysis
With the mathematical tool set and ready to be used by the author, it gave
the ability to get the data needed for comparison. The comparison itself was
to see the error (over time) of each propagator model in reference to the TLE
historical data as the true state of the satellite. The comparison between the
propagators in reference to the TLE ephemerides gave some insight of the
"behavior" of the propagation over time.

3.2 Computational Tools

In conducting this research, the author has thought and be taught to utilize com-
puters to do all the scientific computing. With the help of computer, the author
gained the ability to easily collect data as well as to process them in such way they
were needed. The author also was thought to use some programs in a hope to ease
the research to some degree. The programs were all open-source so that the author
had quite a handful of references on how to utilize the programs to its optimal use.
Most of the programs were in the field of utilizing programming language and its
packages or modules. All of that helping tools were in a hope to make an easier
calculations, models for simulations, and analysis for the thesis.

3.2.1 Python Programming Language

The programming languages that was used in conducting this research was Python.
The first reason to why the author chose Python was that Python got a lot of
already existing building blocks corresponding to classical numerical methods or
basic actions, and in a sense it was straight forward to use. The second reason was
that it has been a "go to" programming language for the scientific computation
for quite some time. The third reason was because Python was relatively easy to
comprehend compared to other programming language, and since the author has
little programming background, especially in scientific computing, it was a good
choice of programming language for the author.
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3.2.2 Anaconda

Anaconda is an open-source software distribution package created by the Anaconda
Inc. As it is an open-source software, it is accessible for all category of uses, from
individual use to enterprise use. Anaconda comes with, for the individual edition,
over than 250 packages and also over than 7500 additional plug-ins and packages
suited for whatever the user need (Anaconda Individual Edition, 2020). The author
then believed that by using Anaconda and its Python IDE, Spyder, would be a great
choice to be used with the computational and modeling needed in this thesis.

3.2.3 Numpy

Numpy is an open-source additional package for Python with the ability to enable
numerical computing (ABOUT US , n.d.). This package helped a lot along the way
of this research, as the author needed its numerical computing power with powerful
numerical arrays objects, and routines to manipulate them. The manipulation of
arrays with this package gave so much room for the author to work with. The ease
of use of this package was also implemented in parallel to other packages throughout
the codes that the author had built and used.

3.2.4 SciPy

Scipy is a collection of open-source software that is used as an ecosystem for scien-
tific computing, of course for Python (1.6. Scipy : high-level scientific computing ,
n.d.). Its submodules correspond to different applications, such as integration, opti-
mization, statistics, special functions, etc. Scipy is meant to be operated alongside
with Numpy array which provides a high performance. With this, Scipy gave much
of the helping hand needed by the author to compute some functions with some
degree of complexity.

3.2.5 Pandas

Another useful Python package that the author used was Pandas, an open source
data analysis / manipulation tool. It provides a fast, flexible, and expressive data
structures that are designed to be easy and intuitive for the users (McKinney & the
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Pandas Development Team, 2020). All of the manipulated arrays were efficiently
computed with the Numpy and with the use of Pandas in parallel to it, the author
gained the ability to intuitively create a more expressive data output, in specific.
With the use of Pandas the author also had the ability to store the output in such
way that it was compatible to be opened with other programs.

3.2.6 Matplotlib

Matplotlib is an additional library for Python that enables visualization of data in
Python (Matplotlib: Visualization with Python, n.d.). Using this library allowed
the author to visualize a lot of data that were needed to be represented with a
high fidelity, as you might say, results fitted with the author’s customizations.
This python package helped a lot in the post-processing of the data for this thesis.
All of the graphs were mostly use for visual representation, with the hope that
the readers would have an intuitive sense of what the data and also the analysis
behave.

3.2.7 cysgp4

cysgp4 is a Cython, an extension of C language in Python programming, powered
package that wraps the C++ SGP4 Satellite library for which it is dependent on
the use of the two-line elements (TLE). The intention of this library is of course to
calculate or rather predict the orbit of the satellites, in preference of course, around
the Earth at any time of interest. The cysgp4 works with arrays of TLEs and make
use of multi-core platforms to boost processing times a lot (cysgp4 0.3.3 , n.d.).
This module helped the author get the model for the SGP4 propagator easily since
it was out of the author comprehension to make.

3.2.8 Scikit-learn

Scikit-learn is a Python module that integrates a wide range of machine learning
algorithms for medium-scale supervised and unsupervised problem. This package
helped the author as it is intended for non-specialist in machine learning users. It
gave an easy feel of use as it uses a consistent, task-oriented interface. It is also
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relying on the scientific Python ecosystem for which it can easily be integrated into
application outside the traditional range of statistical data analysis (l Varoquaux;
Alexandre Gramfort, 2011).

3.2.9 symfit

symfit is a Python package that exist to create a more "Pythonic" or simply creating
a straightforward code that exist for fitting of data. Due to the symbolic nature
of symfit, it saves the author the trouble of having to determine the derivatives.
Furthermore, having this Jacobian allows good estimation of the errors in your
parameters, something scipy does not always succeed in (symfit 0.5.3 , 2020).

3.3 Data Collection

In conducting this research, and for it to be inline with the topic, the author needed
to acquire the needed parameters. In doing so, the author thought of acquiring the
parameter through the publicly accessible site which will be further described in
the following subsections. The data collected was an essential part for the starting
line of this thesis. The author decided to go with three different satellites operated
by LAPAN. To give a general idea on what satellites that were being used, the
following subsection will discuss about each satellites.

3.3.1 Lembaga Penerbangan dan Antariksa Nasional (LA-

PAN)

On 27 November 1963, Lembaga Penerbangan dan Antariksa Nasional or LAPAN
has finally established with the Presidential Decree No. 236 of 1963 concerning
LAPAN, after the presence of an informal space agency prior to the year (Sejarah
LAPAN , n.d.). LAPAN is a Space Agency Organization, accountable to the Presi-
dent through the Minister responsible for government affairs in the field of research
and technology. LAPAN has the task to perform government functions in the field
of aerospace research and development and its use, as well as the management of
space, in accordance with the provisions of the legislation (Tugas dan Fungsi , n.d.).
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Historically, with the task given to LAPAN, they have done research on rock-
ets, remote sensing, satellites, and space sciences for decades. Regarding satellite
innovation, LAPAN currently operates and owns three satellites. The first satel-
lite is the LAPAN-TUBSAT / LAPAN-A1, the second one is LAPAN-ORARI /
LAPAN-A2, and the third one is LAPAN-IPB / LAPAN-A3. There are two other
satellites that will orbit the Earth soon enough, LAPAN-A4 and LAPAN-A5.

LAPAN-TUBSAT / LAPAN-A1

LAPAN-A1 / LAPAN-TUBSAT satellite is the first generation LAPAN satellite.
The primary objective of this satellite is to monitor the Earth. The LAPAN-A1
/ LAPAN-TUBSAT satellite was successfully launched from Sriharikota, India, on
10 January 2007. It has a polar orbit and is intended for monitoring the Earth
(LAPAN-A1 / LAPAN-TUBSAT , n.d.).

Figure 3.1: LAPAN-A1 (LAPAN-A1 / LAPAN-TUBSAT , n.d.)

LAPAN-ORARI / LAPAN-A2

The LAPAN-A2 satellite is the second generation LAPAN satellite, the successor to
the LAPAN-A1 satellite. The main purpose of this satellite is for communication,
earth observation, and Traffic Monitoring. The LAPAN-A2 satellite was launched
from Sriharikota, India, on 28 September 2015 (LAPAN-A2 / LAPAN-ORARI ,
n.d.).
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Figure 3.2: LAPAN-A2 (LAPAN-A2 / LAPAN-ORARI , n.d.)

LAPAN-IPB / LAPAN-A3

LAPAN-A3 is a third generation LAPAN satellite. This satellite is a successor
to the two previous satellites, the LAPAN-A1 and the LAPAN-A2. The main
objectives of this satellite is for Earth monitoring, ship monitoring and measure-
ment of the Earth’s magnetic field. The LAPAN-A3 satellite was launched from
Sriharikota, India, on 22 June 2016 (LAPAN-A3 / LAPAN-IPB , n.d.).

Figure 3.3: LAPAN-A3 (LAPAN-A3 / LAPAN-IPB , n.d.)
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LAPAN-A1

Nation Indonesia, Germany
Type / Application Earth observation
Operator LAPAN, TU-Berlin
Contractors TU-Berlin
Payload 1 x 3CCD Color-Camera with 6 m GSD

1 CCD Color-Camera with 200 m GSD
Attitude Control 3 wheel/gyro pairs (RW 203 wheels + WDE, fiber opti-

cal gyros)
Star Sensor

Communication
Data handling

2 TTCs, UHF 437.325 MHz, 1200 bps

3.5 W RF S-Band Payload
Communication 2220 MHz
524 kB external and internal RAM, 524 EEPROM, 16kB
ROM, 38.4 kbps SCI Interfaces

Power System 4 Solar Panels, 432 x 243 mm, 35 cells in series, max.
14 W
5 NiH2 batteries, 14 V nominal voltage, 12 Ah

Dimension 450 × 450 × 270 mm
Propulsion None
Lifetime 1 year (design)
Mass 57 kg
Orbit 635 km × 635 km, 98 deg (polar)

Table 3.1: LAPAN-A1 Specification
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LAPAN-A2

Nation Indonesia
Type / Application Earth observation, amateur communications, traffic

monitoring
Operator LAPAN
Contractors LAPAN
Payload Digital Space Camera

CCD Color Video Camera
Automatic Identification System (AIS) Receiver
Voice Repeater & Automatic Packet Reporting System
(APRS)

Attitude Control 3 Wheel/Fibre Optic Laser Gyros in Orthogonal Axis
2 CCD Star Sensor
Magnetic Coil
6 Single Solar Cell for Sun Sensor
3 Axis Magnetic Field Sensor

Communication
Data handling

2 TT7C UHF 1200 bps, FFSK modulation, 3W output

S-Band payload Communications, 3.5 W RF output
OBDH 32 bit RISC Processor, 128/256 byte internal, 1
Mbyte RAM and 1 Mbyte Flash Memory External

Power System 4 GaAs Solar Array, 465 x 265 mm, 30 cells in series,
Max 230W(EOS)
4 Lithium-ion Batteries, 16V nominal Voltage, 18 Ah
Total Capacity

Dimension 600 x 470 x 380 mm
Propulsion None
Power Solar cells, batteries
Lifetime
Mass 74 kg
Orbit 638 km × 658 km, 6 deg (equatorial)

Table 3.2: LAPAN-A2 Specification
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LAPAN-A3

Nation Indonesia
Type / Application Earth observation, communications, traffic monitoring
Operator LAPAN, ORARO
Contractors LAPAN
Payload Push-Broom Camera Multi Spectral

Digital Space Camera
CCD Color Video Camera
Automatic Identification System (AIS) Receiver
Space Based Magnetometer

Attitude Control 4 Reaction Wheels & Gyros
2 Star Sensors
3 Magnetic Coils
6 Single Solar Cell for Sun Sensors
1 Pitch Sensor
2 Horizon Sensor

Communication
Data handling

UHF for 2 TTCs; 1200 bps; FFSK

X-Band: 105 Mbps; 5 W max RF Output
S-Band: 3.5 W RF Output
OBDH 32 bit RISC Processor
On Board Data Solid State Memory 4GB RAM & 16
GB Flash Memory with CCSDS Formatter

Power System 5 GaAs solar arrays: @ 46.5 cm x 26.2 cm, 30 cells in
series; max power of 37 Watt
Li-On Battery with capacity of 36 Ah with 16 V Nominal
Voltage

Dimension 667 x 574 x 960 mm
Propulsion None
Power Solar cells, batteries
Lifetime
Mass 115 kg
Orbit 500 km × 516 km, 97.51° (polar)

Table 3.3: LAPAN-A3 Satellite Specification.
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3.3.2 TLE Data

This thesis solely relied on the data acquired inside of the Two-Line Element (TLE).
The TLE itself gives the mean orbital elements of an Earth orbiting objects at a
specific and spontaneous time. As stated in the previous chapter, the TLE are
available for the public through a website and the author was able to obtain the data
fairly easy. The TLE data in this thesis are the TLE historical data of LAPAN-A1,
LAPAN-A2, and LAPAN-A3. All of the data were obtained through the celestrak
website. The TLE data were necessary to give a glimpse about the behavior of the
satellite state over time, of course with its respective epoch. Thus, the data were
used as the real or controlled data for which all the propagator need to refer to in
the simulation and for further analysis.

Obtaining TLE Data

The first thing the author did in collecting the TLE data was by accessing the spe-
cial data request webpage provided in celestrak, https://celestrak.com/NORAD/
archives/request.php, where then the author was asked to fill some required
personal information and the information in regards to the satellites of interest.
The needed to fill data for the satellites were the satellites’ catalog number, the
start date, and the stop date. For the satellite section, the author input as the
following table,

Catalog No. Satellite Name Start Date End Date
YYYY-MM-DD YYYY-MM-DD

29709 LAPAN-A1 2007-01-10 2020-12-07
40931 LAPAN-A2 2015-09-28 2020-12-07
41603 LAPAN-A3 2016-06-22 2020-12-07

Table 3.4: Satellites data to be requested

Then the author needed to define starting date is date of which the ephemerides
data started, in this case the author set all of the starting time to be the date of
launch of each satellites. For LAPAN-A1 the author set to 10 January 2007, for

44/209

https://celestrak.com/NORAD/archives/request.php
https://celestrak.com/NORAD/archives/request.php


NUMERICAL ANALYSIS OF ORBIT PREDICTION ERRORS OF LAPAN’S SATELLITES

LAPAN-A2 the author set to 28 September 2015, and for LAPAN-A3 the author
set to 22 June 2016. The stop date is the last date of the historical data, and for
all the satellites the author set it to stop on 7 December 2020. All of the details
are in the Table. 3.4. Then, the requested data of the satellites were sent by an
email to the author in a form of .txt file. The preview of the content of the raw file
can be seen below,

1 40931U 15052B 15271.78630001 .00000639 00000-0 00000+0 0 9998

2 40931 5.9992 25.6568 0013796 3.6374 59.9065 14.76340487 80

1 40931U 15052B 15272.31483986 .00000638 00000-0 00000+0 0 9995

2 40931 5.9988 21.9158 0013213 11.0283 349.0707 14.76347526 161

1 40931U 15052B 15272.65260880 .00001350 00000-0 10000-3 0 9995

2 40931 6.0001 19.5263 0013132 15.4783 344.5656 14.76348257 213

1 40931U 15052B 15272.72016628 .00000445 00000-0 -27196-4 0 9992

2 40931 5.9996 19.0388 0013165 16.6402 343.4213 14.76347078 222

The total received data of LAPAN-A1 was 32,392 lines, LAPAN-A2 was 4,648
lines, and LAPAN-3 was 20,390 lines. Divide them by two gave how many obser-
vations were made for all of them– 16,196 for LAPAN-A1, 2,324 for LAPAN-A2,
and 10,194 for LAPAN-A3. Now remember, those numbers described the total of
observations made from the day those satellites were launched into their orbit. But
of course, there need to be an evaluation of the raw data before the author could
process them even further.

All of the epochs or the time of observation between each satellites would differ
from one another, as previously stated in the last chapter. This difference in the
epochs of the satellite was not entirely a set back for the processing of the TLE
data nor the simulations, since the data processing and simulations of each satellite
would be done separately and according to each respective epochs. That means
the author needed to process the requested TLE data into a more flexible for them
to be manipulated or processed further. One other thing to be noted is that some
of the data might have duplicates in them, this might be due to multiple updates
at once. This set back would be explained after the following subsection.
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Figure 3.4: TLE update frequency of LAPAN’s satellites

As shown in the Fifg. 3.4, all of the satellites received different different fre-
quency of updates. For LAPAN-A1 the update frequency were mainly on an hourly
basis, though there were some updates that takes longer than one day, depicted by
the outliers. For LAPAN-A2, the update frequency were mainly on the daily basis,
some oven take more than two days get a new update, depicted by the outliers.
As for LAPAN-A3, the update frequency were more frequent in comparison to the
two, the satellites mainly received hourly update for the state update, though there
were some update that took longer but not longer than four days, depicted by the
outliers.

Extraction of Orbital Elements for Each Satellites

As presented in the Table. 2.1 and Table. 2.2 from the previous chapter, the TLE
data contains among other, the mean orbital element of the orbiting object. The
author only needed the epochs and the orbital elements listed in them. The epochs
were needed for the later references of the orbit propagation while the orbital
elements were needed for evaluation value for the propagated state. The needed
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orbital elements were divided into two category, the first one is for the initial state
for propagation that is the first observation in the TLE historical data. The latter
one is the evaluation values for propagated values that is the rest of the TLE
historical data. Since the TLE contains more than what was needed for this thesis,
it meant that the author needed to separate or rather select the necessary ones and
collected them, accordingly, to a "container" for which it would be much easier to
use later on in the process of propagating the states. Here are the needed elements
from the TLE,

Elements Line Columns

Epoch 1 19 - 32
Inclination 2 09 - 16
Right Ascension of Ascending Node 2 18 - 25
Eccentricity 2 27 - 33
Argument of Perigee 2 35 - 42
Mean Anomaly 2 44 - 51
Mean Motion 2 53 - 63

Table 3.5: Necessary elements to be extracted from TLE
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Figure 3.5: TLE data extractions

As mentioned before, there are no direct information regarding the semimajor
axis, a and the true anomaly, ν within the TLE. Both of the non-specified elements
were relatively straightforward to obtain or rather to convert from other parameters
listed in the TLE. Firstly, to get the value of the semimajor axis, the value can be
obtained using the Kepler’s third law on the mean motion of the satellite,

n =

√
µ

a3
(3.1)

The mean motion of the satellite is expressed in revolution per day, thus the
unit should be converted into a more suitable one. In this case radian per second,

n =
nTLE2π

24 ∗ 3, 600
(3.2)

and when rearranged the conversion into the eq. 3.1, the equation becomes,

a = 3

√
µ

n2
(3.3)
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Now then is for the is true anomaly, ν. This element can be obtain by using
the mean anomaly, M , where the two are related through what it is called the
Eccentric Anomaly, E, for all elliptical orbit e < 1.0, through this equation:

M = E − e sin(E) (3.4)

By taking the E as a function of f(x) and solving it by implementing the Newton-
Raphson iteration, the equation lead to:

En+1 = En +
M − En + e sin(En)

1− e cos(En)
(3.5)

This Newton-Raphson iteration would go on until the successive values of ec-
centric anomaly are close enough (usually within 10e−8), |En+1−En| < tolerance.
The calculated eccentric anomaly is then can be directly be put into the following
equation to calculate for true anomaly:

tan(ν) =
sin(ν)

cos(ν)
(3.6)

where,

sin(ν) =
sin(E)

√
1− e2

1− e cos(E)
or cos(ν) =

cos(E)− e
1− e cos(E)

(3.7)

(McClain, 2013)
To be noted that this thesis solely be relied on this conversion due to the fact

that the satellites operated by LAPAN that are the interest of this thesis orbital
paths are elliptical orbits with e < 1.0. For a full extraction and conversion, they
are all listed in the codes in the appendix.

As mentioned before, the author needed to reevaluate the raw data before any
further processes, one of the evaluation was that there might be duplication of
updates within the TLE historical data. This happened with all of the historical
TLE data that the author had requested. As an example here is one of several
update duplicates of TLE data within the LAPAN-A2 historical TLE data.

1 40931U 15052B 20011.77319414 .00000873 00000-0 32448-4 0 9993

2 40931 5.9945 19.8389 0013427 198.6363 161.3444 14.76624730231911

49/209



NUMERICAL ANALYSIS OF ORBIT PREDICTION ERRORS OF LAPAN’S SATELLITES

1 40931U 15052B 20011.77319414 .00000873 00000-0 32448-4 0 9993

2 40931 5.9945 19.8389 0013427 198.6363 161.3444 14.76624730231911

The epoch of the two data are the same and the other parameters or values
are also the same for the two updates, even though the other parameters has a
chance to be different. This duplicate of epoch would give some trouble later on
with the simulation, especially when defining the time difference of each epoch. To
compensate this duplication phenomenon the author decided to remove one of the
duplicate, the latter one to be precise. The duplicate removal process is fairly easy
with the help of pandas package, The author just need to use the following func-
tion after extracting all of the necessary parameters in the TLE into a DataFrame
"container", in this case the container is called coes_df .

coes_df.drop_duplicates(subset=["Epoch"], inplace=True)

3.4 Mathematical Model

The mathematical model were used in a way to achieve the suitable and relatively
correct results of data extractions, state conversions and orbital propagations. The
author, with the help of Python programming and also the literature given in the
previous chapter, came up with several mathematical models that were needed
for this thesis. Though, one mathematical model has been stated outside of this
section, that is the extraction of the TLE datasets, the following are the necessary
ones to be used along side with the simulation.

3.4.1 Conversion between Orbital Elements and State Vec-

tors

After the extraction of the necessary orbital elements and the conversion of the
mean motion to the semimajor axis, a, and also mean anomaly, M to the true
anomaly, ν, the author then have the ability to convert the classical orbital elements
into the state vector as well as the other way around. To be noted that these
conversion are all based on the Fundamental of Astrodynamics and Application
(McClain, 2013). All of the steps are shown in the subsection below.
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Orbital Elements into State Vector

In calculating or converting the orbital elements into the state vector, the first
thing to keep in mind is that this conversion is to determine the state vector in
the perifocal, PQW , coordinate system and after that the state vector are rotated
into the geocentric, IJK, coordinate system. Now here are the steps to convert
the orbital element into the state vector:

1. The first step is to convert all of the orbital elements angle, from degree to
radian, this due to NumPy computational processing is in radian.

2. The next step is to convert the semimajor axis into semiparameter, since the
semiparameter is defined for all types of orbit. That said, the semiparameter
equation is as follows,

p = a(1− e2) (3.8)

3. Then, there is a need for a new coordinate system. The coordinate system in
mind is the perifocal coordinate system, PQW , for then it is to be rotated to
the geocentric equatorial system, IJK. perifocal coordinate system is where
the orbital plane is laid flat in the coordinate system and is centered in the
orbit focus. Now then, begin with finding the position vector of the satellite
in the perifocal coordinate system:

~rPQW =


p cos(ν)

1+e cos(ν)
p sin(ν)

1+e cos(ν)

0

 (3.9)

Then the velocity of the perifocal coordinate system is defined as,

~vPQW =


−
√

µ
p

sin(ν)√
µ
p
(e+ cos(ν))

0

 (3.10)

4. The last part is to rotate the state vector that are already define in perifocal
coordinate system to the equatorial geocentric system. the position vector is
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defined as,

~rIJK = [ROT3(−Ω)][ROT1(−i)][ROT3(−ω)]~rPQW (3.11)

and the velocity vector is defined as,

~vIJK = [ROT3(−Ω)][ROT1(−i)][ROT3(−ω)]~vPQW (3.12)

5. The last part is to separate between the position vectors and the velocity
vectors of the rotated matrices into a container, in this case the container is
in a form numpy array.

State Vector into Orbital Element

The conversion of the state vector to the orbital elements is also a common and
fundamental routine. This conversion would come in handy later when the prop-
agation have been made. But before getting ahead of ourself, let us see how this
conversion is done:

1. Firstly, a definition of the unit vector I, J, andK, for which they all contain
only the value of one.

2. Then, the state vector are put into two different container or array from
NumPy, and also the magnitude of both of these vectors are calculated.

3. Several intermediate vectors are needed to be defined before actually con-
verting the state vector to the classical orbital elements. The first one is to
define the angular momentum, ~h, and its magnitude. The angular momen-
tum acquired from the cross product of the position vector and the velocity
vector,

~h = ~r × ~v (3.13)

4. The node vector, ~n, and its magnitude are next to be defined. The node
vector is resulted from the cross product of the K vector defined earlier and
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the angular momentum vector,

~n = K̂ × ~h (3.14)

5. Another one to be defined is the specific mechanical energy, ξ, for which it is
used in the calculation for the semimajor axis,

ξ =
v2

2
− µ

r
(3.15)

6. From here on out the rest of the orbital parameters can then be calculated.
Starting with the eccentricity that is is acquired from the form of its vector,
and the magnitude of the vector is the eccentricity value of the orbit. the
equation make use of the position vector and the velocity vector,

~e =
(~v − µ

r
)~r − (~r · ~v)~v

µ
(3.16)

and the value of the eccentricity is,

e = |~e| (3.17)

7. Then the semimajor axis and the semiparameter can be obtain according to
the value of the eccentricity that is. For non-parabolic orbit, the semimajor
axis and the semiparameter are defined as,

a = − µ

2ξ
p = a(1− e2) (3.18)

For parabolic orbit, the semimajor axis is defined as infinity (∞) and the
semiparameter is defined as,

p =
h2

µ
(3.19)
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8. From here on out, the res of the angles of the classical orbital element can be
calculated. The first one is the inclination, i,

cos(i) =
K̂ · ~h
|K̂||~h|

(3.20)

9. Next is the right ascension of the ascending node, Ω,

cos(Ω) =
Î · ~n
|Î||~n|

IF (nJ < 0) THEN Ω = 360◦ − Ω (3.21)

10. Next is the argument of perigee ω,

cos(ω) =
~n · ~e
|~n||~e|

IF (eK < 0) THEN ω = 360◦ − ω (3.22)

11. The last one is the true anomaly, ν,

cos(ν) =
~e · ~r
|~e||~r|

IF (~r · ~v < 0) THEN ν = 360◦ − ν (3.23)

12. The last process of this conversion is to put them all together inside of a
numpy array container or a list with the according series semiparameter,
eccentricity, inclination, RAAN, argument of perigee, and true anomaly.

3.4.2 Satellite State Propagation

As previously mentioned, the TLE datasets or historical data gives a somewhat
not-so frequent updates on the orbital element of the satellites. With that, the
extraction of the historical data would give a controlled value of the orbital ele-
ments, or to put it other words it would give different time steps in between epochs.
Nonetheless, the propagation model and its mathematical form should be robust
before even going to the point where the author needed to match the time steps
nor implementing them in the simulations. With that, in this section the author
set the function definition for the propagator that was used in this thesis, namely
Two-Body, Two-Body + J2, and SGP4, although the SGP4 would rely on the an
externally existing package.
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For the Two-Body and the Two-Body + J2 propagation models, the author use
the SciPy’s built-in ODE solver called the solve_ivp. It has the option to use
various algorithm, namely RK45 or the Runge-Kutta method fourth order, RK23

or the Runge-Kutta method third order, DOP853 or the Runge-Kutta method
eight order, Radau or the Runge-Kutta method fifth order, BDF or the multi-
step variable-order, LSODA or the Adams/BDF method with automatic stiffness
detection and switch (community, 2020).

Two-Body Propagation

The two-body propagation is an idealized propagation model for which it only
considers the attraction forces from the two interacting bodies. Thus, what the
author expected to be the result of this method of propagation is that all of the
orbital elements are not changing its value with time. But, that would be just an
initial assumption and without the result it would mean nothing. The propagation
itself is done by solving for the two-body equation, that is,

~̈r = −
Gm⊕
r2

~r

r
(3.24)

The solve_ivp solver needs a time frame and initial state input as well as a
"callable function" as the base arguments. Since the input would be in a form of
position vector and velocity vector, the two-body problem needs to be broken down
into its components. Here are the steps taken for the "callable function" definition:

1. Firstly, define the function name and arguments for the two-body problem.
The arguments are the time period and initial state of the satellite. The rea-
son that the arguments are only those two is because the "callable function"
of the solve_ivp only need those two arguments.

2. The state is the position and the velocity vector. Both of the vectors are
separated into its components,

x, y, z

and
ẋ, ẏ, ż
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3. The there is the need to find the magnitude of the position vector,

r =
√
x2 + y2 + z2 (3.25)

in which the magnitude is used in the two-body equation.

4. Next is to find the derivative of each velocity vector, as shown here,

ẍ = − µ
r3
x (3.26)

ÿ = − µ
r3
y (3.27)

z̈ = − µ
r3
z (3.28)

Now the acceleration above then assigned to a variable with the respected
value ẍ, ÿ, z̈

5. rearranging the results into a sorted numpy array as the following ẋ, ẏ, ż and
ẍ, ÿ, z̈ for the return value.

Now that the function definition has been defined. The solve_ivp then can be
used, and the use of the solve_ivp function can be seen in the appendix. But for
the sake of this subsection, here is the look of it,

scipy.integrate.solve_ivp(func, t_s, y0, method="RK45", t_eval=None)

From the solver above and as stated before, the author need to specify the time
frame and also the initial state of the data. In addition, all of the steps are being
stated inside of a function statement for the first argument of the solver. The
t_eval is essentially the only time, within the time frame of course, that is being
evaluated, or to be blunt the ones that is going to be the output of the solver.
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Figure 3.6: Two-Body Propagation Flowchart

Two-Body Propagation + J2 Propagation

The Two-Body Propagation with J2 perturbation or any other other perturbation
is only an expansion on the two-body problem. As mentioned, this propagation
method adds in the consideration of the Earth oblateness in shape into the equa-
tion. Thus, there should be some changes within the propagated orbital elements,
mainly the RAAN and the AoP. Again, this is only an assumption and only gives
an initial idea on how would the propagation behave. Now, recalling from the
previous chapter regarding the orbit perturbation, the two-body, which includes
perturbation, equation becomes,

~̈r = − µ
r2
~r

r
+ ~p (3.29)

where ~p is an acceleration due to perturbation. in this subsection case the
perturbation is the J2 perturbation, and the equation can be rewritten into,

aI = −3

2

J2µR
2⊕ ~rx

r5
(1− 5~r2z

r2
) (3.30)
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aJ = −3

2

J2µR
2⊕ ~ry

r5
(1− 5~r2z

r2
) (3.31)

aK = −3

2

J2µR
2⊕~rz

r5
(3− 5~r2z

r2
) (3.32)

Now that the acceleration of each axis has been stated, the equation for the
two-body + J2 perturbation can be rewritten as,

ẍ = − µ
r3
x+ aI (3.33)

ÿ = − µ
r3
y + aJ (3.34)

z̈ = − µ
r3
z + aK (3.35)

Now, the same step of defining the function applies with this two-body + J2

as the previous two-body one. the only difference to it is in the fourth (4th) steps.
rather than using the stated equation in the step, the equations are replaced with
the eq. 3.33, eq. 3.34, and eq. 3.35. Same as the previous section, it is to be noted
that the initial state vector is the first epoch of the requested TLE ephemerides,
and all of the conversion of the orbital elements are the same way as the previous
sections. The time frame of which the satellites’ states are being propagated is ten
(10) days from the epoch.
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Figure 3.7: Two-Body + J2 Propagation Flowchart

SGP4 Propagation

The SGP4 is a propagator that is solely, or rather heavily, relying on the Two-Line
Element (TLE) dataset. The propagator itself considers the secular and short-
and long-periodic variations due to Earth oblateness, solar and lunar gravitational
effects, gravitational resonance effects and orbital decay (e.g., atmospheric drag).
That being said, in order to reduce the error of creating the code, the author relied
on the an external package called the cysgp4 as previously mentioned before. This
subsection would give a glimpse of how the author used the cysgp4 package to
propagate the satellites’ state. The steps of which the author took was different
to those the Two-Body propagation and The Two-Body + J2 propagation. There
are two different way on using the cysgp4, one is to use the function Satellite

and the other one is called propagate_many. The apparent difference is that
the latter will utilize all CPU cores that are available on the system, but for the
convenience and also the straightforwardness of use, the author decided to work
with the propagate_many. The steps on how to use the function is as the following,

1. First of all the author need to fetch all of the lines in the TLE historical data.
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In this case the author need to fetch the satellites raw data or still in the .txt
format.

2. Then the author create and array of list, separating the lines of the TLE
historical data into individual cysgp4.cysgp4.PyT le type.

3. The author is then define an observer longitude, latitude and altitude in
Earth Centered Inertia Frame (ECI). For this case the author uses his own
location. Although it is not mandatory for the author to include the observer
if the author only need the ECI position and velocity of the satellite.

4. The author then extracted the time of updates in the second steps and put
it into an array in a form of Modified Julian Date.

5. The author then set a propagation period and also the time step of the need
to be evaluated value in the propagation, in which already settled by the
previous step .

6. With the propagation period, observer, and TLE data set, the author then
just have to call the propagate_many with each of those key arguments to
use the function.

propagate_many(T, TLE, obs, do_geo=False, do_topo=False)

7. The propagation would give the satellite’s positions and velocities. Due to
that reason that is also the reason why the author want to separate each
satellite into an individual assigned value or simply for ease of sorting.
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START

STOP

TLE @ 
t = 1st MJD

T = 
MJD of

each epochs

propagate_many
to the next MJD

True

False

t <= T

Storing the ECI 
state vectors at 

t_eval

Figure 3.8: Two-Body + J2 Propagation Flowchart

3.5 Simulations Regimes

The simulations would only concern about the propagation scenarios of each propa-
gation models. The help of using solve_ivp gave the author the ability to propagate
the states easier, though for the SGP4 the author uses the help of an already exist-
ing package provided for the public, cysgp4. All of the satellites are being treated
equally in terms of propagation parameters. That said, here are the parameters
that are implemented in each of the scenarios,

1. All of the propagation period of each model are from the point when they
were launched to the 7 December 2020;

2. The initial value of the state vectors are the value of which in the first epoch
of their respective TLE historical data;

3. The only propagated values that are taken into an account or evaluated are
that of which at the same time as each epoch in TLE historical data;
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4. The propagated values then are contained in a container separating all of the
values, namely x, y, z and ẋ, ẏ, ż; and

5. For the convenience of the error analysis, the container would also be provided
with each respective errors in position and velocity vectors.

3.5.1 Selecting the State0 and t0

For the selection of the initial state is relatively straightforward, the author just
need to select the first states or the first state according to the epoch in the TLE
data of each of the satellites’ converted TLEs. These first states are the only ones
that are needed for the simulations of propagations. The reason why is that so
the author can easily analyze how the propagation models behave over time with
respect to the control data / TLE data. The following table gives the initial state
and the initial time stamp of each of the satellite,

LAPAN-A1 LAPAN-A2 LAPAN-A3
Epoch 2007-01-11 2015-09-29 2016-06-23

14:35:14.434944 18:52:16.320864 10:15:05.956128
X (km) 2193.69 112.74 2894.81
Y (km) 456.87 4208.07 -1393.59
Z (km) -6649.24 1.75 6174.42

VX (km
s
) -0.888 -1.780 -4.970

VY (km
s
) 4.293 -5.124 5.197

VZ (km
s
) -0.907 -2.031e-03 4.117

Table 3.6: Initial timestamps and states of each satellites

3.5.2 Defining the Time Frame and Time Steps

As previously mentioned, all of the time steps between updates of each satellites
are different due to one reason or the other. But for defining the time frame of the
propagation, the time between first epoch and the last epoch is the most straight-
forward answer to how the author define the time frame. The time difference on
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the other hand, got a little bit more treatment. To give a little perspective, the
Fig. 3.9 gives an idea on how the steps are looking like.

t0

t1

t2

t3

tn

.

.

.

.

.

dt1

dt2

dt3

dtn

Figure 3.9: Time differences between epochn to the first epoch

From the figure above, the t0 until the tn are the epoch updates of the TLE
data. The dt1 until dtn are the time difference between between the time of updates
and the first epoch. This method is used to be implemented as the t_eval in the
solve_ivp function. time differences are then gathered inside of a list. The apparent
problem comes if the duplicates of epoch are not removed. For one and another
reason, if there are duplicates of values in t_eval then the solver would not work.
That is why the removal of duplicates are necessary in the first place. This method
of defining the t_eval rather than the time difference between each updates is still
fairly acceptable and fairly robust and easily understood.

3.6 Error Analysis

The comparison of data was be done in several ways. The first one was a visual
representative of each propagation methods and the control value. This, however,
only gives little information on what was going on, in this case how does the error
of the propagation visually looked like. The second method of comparison was
with using tables containing all the data from propagation. This gives the sense of
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difference since the author know exactly the value of error in the propagation. In
addition to that, the author also created a graph visualizing the errors with respect
to the propagation time.

3.6.1 Controlled Values

The control value are needed to be a referenced value for the propagation for an
error analysis of each propagation and each satellites. The control values take on
two form, the first one is the state vectors and the orbital elements from each
satellites’ TLE historical data. The author just need to take the extracted orbital
elements data and convert all of them into their respective state vectors and contain
them in a pandas DataFrame container for easy access. Table 3.7 gives a preview
of the controlled values from LAPAN-A2 satellites.

All of these orbital elements and the state vectors as well as the epoch are then
treated as the control values, as stated before. These control values are going to
be used as the timestamps and time steps reference for the simulations which then
lead to the analysis of errors for each propagation method towards each of the state
vectors and orbital elements values. Just to be sure that the readers are all in the
same page, all of the state vectors are in reference to the Earth Centered Inertia
(ECI), just like what have been explained in Chapter 2.

3.6.2 Propagation Error

The propagation error is inevitable, just like any other measurement. With the
models and the scenarios are set, the author could analyze the error of the prop-
agation error with the corresponding true value of the orbit at different epoch of
the TLE. The outline of how the author analyze the propagation error is as the
following:

1. the saved propagation state vectors are then converted into orbital elements
using the already stated conversion regimes,

2. the state vectors and the orbital elements then saved into a numpy array
container,
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3. the propagated values within the container is then being subtracted with the
values of that in the TLE historical data, and the results are in absolute
values,

4. the error values of the propagation with respect to the TLE historical data
then contained in a pandas DataFrame container, and

5. the propagation error then serves as the base for the regression analysis, linear
to be precise.

3.6.3 Regression Analysis

Through the collected propagation error then the author uses regression analysis,
linear regression in particular, to observe how the errors of propagation, in terms
of distance, correlates and behave over the period of propagation. As previously
mentioned, regression analysis refers to an analysis of an independent variable in
which it has an effect towards another variable or called a dependent variable.
One regression to be pointed out for this thesis is the linear regression due to the
fact that it is the simplest way of regression analysis. To be noted there are two
relationships that are describes in the linear regression, the first one to be positive
relationship and the other one is negative relationship. The first one means that for
the increasing value of the independent variable, the dependent variable increases
also in value. The latter one means for the increasing value of the independent
variable, the dependent variable will decrease in value. The relationship, when
written mathematically, yields this equation,

Y = β0 + β1X (3.36)

where,

• Y i the expected value of y for a given value of x;

• β0 is the y-intercept of the regression line; and

• β1 is the slope of the line.
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Figure 3.10: Positive and negative relationship between the vari-
ables (left to right) (Linear Models, 2020)

In doing the regression the author uses the Scikit − Learn module to easily
analyze the error in the propagation. The following are the steps that the author
took in doing the analysis,

1. the author firstly need to call the error container, stated in the previous
subsection,

2. then the author selects the "Epoch" column as the independent axis or the
x axis, and selects the state vectors and orbital elements as the other values
for dependent variables, y

3. the dependent variables in this case are processed separately from each other,
this is to see how each parameters behave over time,

4. then the author uses the,

LinearRegression().fit(x, y)

for each y values, to use the linear regression analysis provided by the module,

5. then the author uses the .coef_, .intercept_, and .score(x,y) to find the regres-
sion coefficient, the intercept value, and the R2 (for the correlation analysis),
respectively
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6. after that, the author put in regression coefficient, the intercept value, and
the R2 of each satellites for each propagation method in a pandas DataFrame
container

7. for the graphing, the author just need to set the plot to be a scatter plot and
also a line plot, where the scatter plot would give the values of error and the
linear would give the regression line of the analysis.

From all of the stated procedural steps of error analysis, the author hoped that
the propagated values to give some kind of respectable or acceptable values. With
that the author also hoped that the behavior would not be too all over the place,
meaning that the error data would not give too much of residuals so that the errors
could correlates more to the propagation time. If, however, the data ever gave too
much of ambiguity or some kind of non intuitive errors, then that does not mean
that the research would considered to be useless.

3.6.4 Fourier Analysis

Also through the collected propagation error and also the result given by the re-
gression analysis, the author did some more analysis on them. The ones that went
through more analysis were the ones that were "seemingly" have periodical pattern
in their errors of propagation. The periodical pattern would leave the linear anal-
ysis in a tight spot as to how the fit would behave overtime, but using the Fourier
analysis to replicate the periodic patter of the error with some finite series, the
author gained more satisfactory analysis on the errors. Again, here is the equation
for the Fourier Series,

f(x) = a0 +
∞∑
n=1

an cos(nωx) +
∞∑
n=1

bn sin(nωx) (3.37)

where,

• f(x), is real-valued function;

• a0, an and bn, are the Fourier coefficients; and

• ω, is the frequency.
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The use of the equation was made easy by the use of the symfit package. The
following are the steps taken when the author was using the package,

1. First off, the author need to eyeball the "seemingly" periodical functions in
the error graphs.

2. The author then need to create a variable in the name of the pointed out
error data, and of course the time domain of propagation as the x value, later
on.

3. Then The author set the x and y variables, errors and time accordingly, and
also the frequency of the function.

4. To be noted that every data / graph has different frequency, and the author
need only to eyeball the period to get the frequency.

5. Then the author need to declare the function that will be use to fit the data,

model_dict = {y: fourier_series(x, f=w, n=3)}

This gives the idea on what function is being used, and at what order, n the
author used for the Fourier series.

6. Note again, that for every graphs / data, the order vary between small integers
to bigger one, and of course the larger the oder the longer the program fit
the data.

7. In this case, the author limit the order to 50, if the R2 value of the fit is
relatively still unsatisfactory.

8. Then the author need to input this function,

fit = Fit(model_dict, x=xdata, y=ydata)

and

fit_result = fit.execute()
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these two are needed to actually fit the data, and also to give the result of
the fitting, where it will give, among other, the equation of the Finite Fourier
series and the R2 value of the data, only by printing the fit_result.

9. Lastly the author manually save the results and also graph the results for the
use of the manuscript.
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CHAPTER 4

RESULTS AND DISCUSSIONS

4.1 Processed TLE Data

4.1.1 Processed TLE Data result

This section contains all of the extracted and processed data from the TLE his-
torical data of each satellite. Those data then would be the control data for the
simulations as mentioned in Chapter 3. But before getting into the simulations
regime and all that, let us just see how the processed and extracted parameters of
the historical TLE datasets of each satellites looks like.

Orbital Elements

Figure 4.1: LAPAN-A1 extracted COEs
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Figure 4.2: LAPAN-A2 extracted COEs

Figure 4.3: LAPAN-A3 extracted COEs
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State Vector

(a) LAPAN-A1 X&Y-Plane Position ac-
cording to TLE historical data

(b) LAPAN-A1 Y&Z-Plane Position ac-
cording to TLE historical data

(c) LAPAN-A1 Spatial Position according
to TLE historical data

Figure 4.4: LAPAN-A1 state vector representation according TLE
historical data
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(a) LAPAN-A2 X&Y-Plane Position ac-
cording to TLE historical data

(b) LAPAN-A2 Y&Z-Plane Position ac-
cording to TLE historical data

(c) LAPAN-A2 Spatial Position according
to TLE historical data

Figure 4.5: LAPAN-A2 state vector representation according TLE
historical data

74/209



NUMERICAL ANALYSIS OF ORBIT PREDICTION ERRORS OF LAPAN’S SATELLITES

(a) LAPAN-A3 X&Y-Plane Position ac-
cording to TLE historical data

(b) LAPAN-A3 Y&Z-Plane Position ac-
cording to TLE historical data

(c) LAPAN-A3 Spatial Position according
to TLE historical data

Figure 4.6: LAPAN-A3 state vector representation according to
TLE historical data

4.1.2 TLE Historical Data Graphs Analysis

Orbital Elements Analysis
The six sets of colored graphs above– Fig. 4.1, Fig. 4.2, and Fig. 4.3, shows
us how the satellite behave over time according to its orbital elements. some
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of the orbital elements behave with such patterns so that they seemed to give
an intuitive sense towards their behavior overtime.

All three satellites’ semiparameters are declining in value over the period
from their launch until 7 December 2020. LAPAN-A1 experienced a decrease
of about 7 km with a nice and steady slope from 2006 to 2012 followed by a
little steep drop where eventually it tried to even out in 2016. LAPAN-A2
experienced a decrease of about 1 km with kind of a steep slope. LAPAN-
A3 experienced a decrease of about 3 km at an almost steady rate. The
eccentricity of all three satellite experienced fluctuations in values over time.
LAPAN-A1 fluctuated between 0.00115◦ and 0.00150◦, LAPAN-A2 fluctuated
between 0.0011◦ and 0.0016◦ wit some outliers that might be due to the reason
stated in the Chapter 2, and LAPAN-A3 fluctuated between 0.00115◦ and
0.00150◦.

The other elements however, behave differently between the satellite. Start-
ing with the inclination, LAPAN-A1’s inclination kept decreases from 2008
to 2015 and then the value went back up until the end of the time pe-
riod. LAPAN-A3’s kept on decreasing over the time almost linearly. As for
LAPAN-A2’s, the inclination fluctuated between 5.990◦ and 6.015◦. LAPAN-
A1’s and LAPAN-A3’s RAAN behaves similarly with each other, the kept on
increasing over the time, but LAPAN-A1’s rate of change is faster. LAPAN-
A2 on the other hand, decreased over time at a fast rate. LAPAN-A1’s
and LAPAN-A3’s AoP kept on decreasing in value, where rate of change of
LAPAN-A3 is faster. LAPAN-A2’s on the other hand, increased in value over
time. the rate of change in RAAN and AoP for LAPAN-A2 are considerably
faster in comparison to the other two.

State Vector Analysis
The blue pale blue colored graphs– Fig. 4.4, Fig. 4.5, and Fig. 4.6, shows
us the position vectors of each satellites based on the TLE converted orbital
elements. They may not seem so intuitive nor make any much of a sense, but
each dots represents the position of which the satellites were being observed
at each epoch. If we look closely, LAPAN-A1 and LAPAN-A2 position repre-
sentation might look fairly clear for us to see how they behave, in comparison
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to the LAPAN-A3.

As described in the Chapter 3, LAPAN-A1 categorized as polar orbit, mean-
ing it moves from pole to pole. from the X&Y-plane position representation,
the satellites orbits from polar to polar, as expected, though there are some
observation where the satellites seemed to be orbiting in a equatorial orbit,
though those are just points of observations. As well as the Y&Z-plane posi-
tion representation. The spatial position representation shows the best view
on how the satellite orbits the Earth, and yes as expected it is orbiting from
polar to polar with some changes in the ascending nodes.

For LAPAN-A2, the X&Y-plane position representation and the Y&Z-plane
position representation does not really give much of an idea on how the satel-
lites’ position according to both respective planes. The spatial position repre-
sentation however, shows roughly that the satellite, as it was being observed,
orbit the Earth in equatorial orbit.

The positions at which the LAPAN-A3 satellite was observed was kinda messy
according to the graphs. The X&Y-plane position representation and the
Y&Z-plane position representation, really does not give any sense on how the
satellite is orbiting the Earth. In addition, the spatial position representation
does not provide any intuitive sense as well.

The point that is needed to be noted is that, those points are only the points
of observation, they do not have to make any sense, but they do need to
represent the satellites relative motion at that particular point of time.
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4.2 Propagation Results

4.2.1 Two-Body Propagation Results

In two-body propagation, it is should be noted that the only forces acting on the
system are the gravitational attraction of the two body. That means, virtually,
there will not be any deviation or change of the states or orbital elements over
the propagation period using this technique. But, to be frank, there are actually
changes though it is in the order where the changes are insignificant to be accounted
for.

Orbital Elements

Figure 4.7: LAPAN-A1 Two-Body propagated COEs
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Figure 4.8: LAPAN-A2 Two-Body propagated COEs

Figure 4.9: LAPAN-A3 Two-Body propagated COEs
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State Vector

(a) LAPAN-A1 X&Y-Plane Position ac-
cording to Two-Body propagation

(b) LAPAN-A1 X&Z-Plane Position ac-
cording to Two-Body propagation

(c) LAPAN-A1 Spatial Position according
to Two-Body propagation

Figure 4.10: LAPAN-A1 state vector representation according to
Two-Body propagation
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(a) LAPAN-A2 X&Y-Plane Position ac-
cording to Two-Body propagation

(b) LAPAN-A2 X&Z-Plane Position ac-
cording to Two-Body propagation

(c) LAPAN-A2 Spatial Position according
to Two-Body propagation

Figure 4.11: LAPAN-A2 state vector representation according to
Two-Body propagation

81/209



NUMERICAL ANALYSIS OF ORBIT PREDICTION ERRORS OF LAPAN’S SATELLITES

(a) LAPAN-A3 X&Y-Plane Position ac-
cording to Two-Body propagation

(b) LAPAN-A3 X&Z-Plane Position ac-
cording to Two-Body propagation

(c) LAPAN-A3 Spatial Position according
to Two-Body propagation

Figure 4.12: LAPAN-A3 state vector representation according to
Two-Body propagation
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4.2.2 Two-Body Propagation Graphs Analysis

Orbital Elements Analysis
The colored graphs above– Fig. 4.7, Fig. 4.8, and Fig. 4.9, shows us how would
the satellite behave over time using the two-body propagation technique. As
can be seen in the graphs, the note that the author gave just now has been
proven. Virtually, the orbital elements are constant through time, other than
the true anomaly of course because. The semiparameter value of LAPAN-
A1, LAPAN-A2, and LAPAN-A3 satellites does not differ much– 7,000 km,
7,020 km, and 6,880 km respectively. All three satellites has roughly the
same eccentricity over the propagation period at 0.001◦. Since LAPAN-A1
and LAPAN-A3 orbit are polar orbit, their inclination are around 97◦ and
98◦, while the LAPAN-A2 is equatorial at the value of approximately 6◦ of
inclination.

The value of the RAAN of each satellites are different. For LAPAN-A1’s
value is constant at 323.9◦, LAPAN-A2’s value is constant at 85.5◦, and
LAPAN-A3’s value is constant at 59.7◦. The AoP are also have the same
sense as well, LAPAN-A1’s value is constant at 306.1◦, LAPAN-A2’s value
is constant at 76.7◦, and LAPAN-A3’s value is constant at 73.2◦. As for the
True anomaly, the value keep on increasing for LAPAN-A1 and LAPAN-A3
at a fairly similar rate, but decreasing for LAPAN-A2 at a rate that is faster
in comparison to the other two.

State Vector Analysis
The blue pale blue colored graphs– Fig. 4.10, Fig. 4.11, and Fig. 4.12, show
us the position vectors of each satellites that were propagated using the two-
body propagation. As expected the orbit does repeat its path perfectly each
time the satellites finished one revolution around the Earth. That is why we
are seeing such perfect "ellipse", though if we were to look at its perifocal
plane it would look like a circle, for each plane, namely in-plane (X&Y Plane),
out-plane (Y&Z-Plane), and the spatial positions representation.

LAPAN-A1 and LAPAN-A3 are both orbiting the Earth in an inclination of
approximately 97◦, that means they are polar orbits. and from the look of
the X&Y-plane position representation of both satellites, they both look very
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elliptical. With the X&Z-plane position representation, it is also creating
a solid argument that they are indeed a polar orbit, since they look fairly
circular on that plane.

On the other hand, LAPAN-A2 is orbiting the Earth at an inclination of ap-
proximately 6◦, that mean it is considered as equatorial orbit. From the look
of the X&Y-plane position representation of the satellite, the graph looks
very much circular. Adding to that argument, the Y&Z-plane position repre-
sentation shows that it moves very much "elliptical" on that plane, meaning
it goes up and down the equator ever so slightly.

These seemingly constant and repetitive path of each satellites are due to the
fact that The ascending node and the argument of their perigee is at a con-
stant value. If they were to change its value overtime, then the satellite state
representation graphs would give more pattern of how the orbit "changes"
through time.
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4.2.3 Two-Body + J2 Propagation Results

As mentioned in the previous chapters, the two-body + J2 propagation technique
considers not only the gravitational attraction of the two body but also the per-
turbation due to the Earth oblateness in shape. What is it that should expected of
the result of this propagation technique is that it would have an effect mainly on
the right ascension of the ascending nodes (RAANs) and the argument of Perigees
(AoPs) for the are not constant anymore, while the other orbital elements are
seemingly still at a constant value– except for the true anomaly again of course.

Orbital Elements

Figure 4.13: LAPAN-A1 Two-Body + J2 propagated COEs
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Figure 4.14: LAPAN-A2 Two-Body + J2 propagated COEs

Figure 4.15: LAPAN-A3 Two-Body + J2 propagated COEs
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State Vector

(a) LAPAN-A1 X&Y-Plane Position ac-
cording to Two-Body + J2 propagation

(b) LAPAN-A1 X&Z-Plane Position ac-
cording to Two-Body + J2 propagation

(c) LAPAN-A1 Spatial Position according
to Two-Body + J2 propagation

Figure 4.16: LAPAN-A1 state vector representation according to
Two-Body + J2 propagation
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(a) LAPAN-A2 X&Y-Plane Position ac-
cording to Two-Body + J2 propagation

(b) LAPAN-A2 X&Z-Plane Position ac-
cording to Two-Body + J2 propagation

(c) LAPAN-A2 Spatial Position according
to Two-Body + J2 propagation

Figure 4.17: LAPAN-A2 state vector representation according to
Two-Body + J2 propagation
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(a) LAPAN-A3 X&Y-Plane Position ac-
cording to Two-Body + J2 propagation

(b) LAPAN-A3 X&Z-Plane Position ac-
cording to Two-Body + J2 propagation

(c) LAPAN-A3 Spatial Position according
to Two-Body + J2 propagation

Figure 4.18: LAPAN-A3 state vector representation according to
+ J2 Two-Body propagation
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4.2.4 Two-Body + J2 Propagation Graphs Analysis

Orbital Elements Analaysis
The graphs above– Fig. 4.13, Fig. 4.14, and Fig. 4.15, shows us how would
the satellite behave over time using the two-body + J2 propagation tech-
nique. As can be seen, the semiparameter value for all satellites, LAPAN-A1,
LAPAN-A2, and LAPAN-A3, are still at the same value as the two-body
propagation, 7,000 km, 7,020 km, and 6,880 km respectively, for this prop-
agation technique. The value of inclination of each satellites are also still
in a fairly the same and constant value of 97.8◦ and 97.3◦ of inclination for
LAPAN-A1 and LAPAN-A3, and 5.9◦ of inclination for LAPAN-A2. The
eccentricity fluctuates a little bit for all of the satellites, but at a point where
the fluctuations rather negligible, or in other word the changes are in very
small degree of magnitudes.

The apparent difference is the RAANs and the AoPs. Both LAPAN-A1 and
LAPAN-A3 RAAN consistently increasing throughout time at a fairly the
same rate, while the RAAN of LAPAN-A2 is decreasing with time but with
a much faster rate compared to the others. The AoP of both LAPAN-A1
and LAPAN-A3 decreases overtime. at a fairly rapid rate, while the AoP of
LAPAN-A2 increases with time, also at a fairly the same rate as the other
two.

The true anomaly, just like the sense we get from the RAANs of each LAPAN-
A1 and LAPAN-A3. They are increasing with time for LAPAN-A1 and
LAPAN-A3, while for LAPAN-A2, the value is decreasing overtime.

State Vector Analaysis
The blue pale blue colored graphs– Fig. 4.16, Fig. 4.17, and Fig. 4.18, shows
us the satellite expected behavior over time as depicted if we use the two-
body + J2 propagation technique. As expected out of the consideration of
the Earth oblateness effect on the satellites’ orbital path, change of RAAN
and AoP, the orbital plane move / rotate ever so slightly creating some kind
of pattern for each of them.

LAPAN-A1 and LAPAN-A3 orbital paths become more apparent. In compar-
ison to the idealized two-body, their X&Y-plane position representation gives
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more "donut" pattern on its motion. What the author meant by "donut" is
that rather than cutting through the polar axis of the Earth, the satellites’
orbit just a little to the side of the axis line, and the accumulated orbit-
ing pattern creates what it seems like a "donut". The X&Z-plane position
representation of LAPAN-A1 gives more sense that they are indeed orbiting
from polar to polar, as the paths are moving "virtually" vertical. While for
LAPAN-A3 does not really give a sense of how it behaves around the equator,
unfortunately.

As for LAPAN-A2 it is also more apparent that it is an equatorial orbit. On
the X&Y-plane position representation, the satellite is orbiting the Earth at
an almost circular pattern. Looking at the X&Z-plane position representa-
tion, we can clearly see how the satellite is behaving around the equator.
As seen, the satellites moves in a "sinusoidal"-like pattern along its path in
revolving the Earth. Moving on to the spatial position representation, the
satellites behavior becomes more apparent. The satellite is in fact an equa-
torial orbit since it never travels through the polar.
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4.2.5 SGP4 Propagation Results

As mentioned in the previous chapters, the SGP4 propagation technique considers
not only the gravitational attraction of the two body but also the secular and short-
and long-periodic variations due to Earth oblateness, solar and lunar gravitational
effects, gravitational resonance effects and orbital decay (e.g., atmospheric drag
that uses power density functions). That means, to some extent of accuracy, this
propagation method should v=give the most accurate results in comparison to the
other two methods. But that does not mean that there will not be any errors
resulted in the propagations, only the errors should be relatively small compared
to the other two.

Orbital Elements

Figure 4.19: LAPAN-A1 SGP4 propagated COEs
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Figure 4.20: LAPAN-A2 SGP4 propagated COEs

Figure 4.21: LAPAN-A3 SGP4 propagated COEs
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State Vector

(a) LAPAN-A1 X&Y-Plane Position ac-
cording to SGP4 propagation

(b) LAPAN-A1 X&Z-Plane Position ac-
cording to SGP4

(c) LAPAN-A1 Spatial Position according
to SGP4

Figure 4.22: LAPAN-A1 state vector representation according to
SGP4
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(a) LAPAN-A2 X&Y-Plane Position ac-
cording to SGP4propagation

(b) LAPAN-A2 X&Z-Plane Position ac-
cording to SGP4 propagation

(c) LAPAN-A2 Spatial Position according
to SGP4 propagation

Figure 4.23: LAPAN-A2 state vector representation according to
SGP4 propagation
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(a) LAPAN-A3 X&Y-Plane Position ac-
cording to SGP4 propagation

(b) LAPAN-A3 X&Z-Plane Position ac-
cording to SGP4 propagation

(c) LAPAN-A3 Spatial Position according
to SGP4 propagation

Figure 4.24: LAPAN-A3 state vector representation according to
SGP4 propagation
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4.2.6 SGP4 Propagation Graphs Analysis

Orbital Elements Analysis
The colored graphs above– Fig. 4.19, Fig. 4.20, and Fig. 4.21, shows us how
would the satellite behave over time by the means of the SGP4 propaga-
tion technique. Generally looking at them, it gives a sense that the orbital
elements changes more than what the previous two propagation methods de-
scribe. As seen the values for the inclination and semiprameter for all of the
satellites are virtually does not change with time, while the other values do
change.

StartingThe semiparameter value of LAPAN-A1, LAPAN-A2, and LAPAN-
A3 satellites does not differ much– 7,007.67 km, 7,025.16 km, and 6883.46 km
respectively. The value of inclination of each satellites are also still in a fairly
the same and constant value of 97.89◦ and 97.51◦ of inclination for LAPAN-
A1 and LAPAN-A3, and 5.99◦ of inclination for LAPAN-A2. The eccentricity
fluctuates a little bit for all of the satellites, the changes are in very small
degree of magnitudes. LAPAN-A1 fluctuates between 0◦ - 0.0055◦, LAPAN-
A2 fluctuates between 0◦ - 0.0027◦, and LAPAN-A3 fluctuates between 0◦ -
0.0041◦.

The more apparent difference, just like in the two-body + J2 propagation, are
the RAANs and the AoPs. Both LAPAN-A1 and LAPAN-A3 RAAN con-
sistently increasing throughout time at different rate of change of which the
LAPAN-A3’s change is faster, while the RAAN of LAPAN-A2 is decreasing
with time but with a much faster rate compared to the others. The AoP of
both LAPAN-A1 and LAPAN-A3 decreases overtime at a fairly rapid rate,
while the AoP of LAPAN-A2 increases with time, also at a fairly the same
rate as the other two.

As of the true anomaly of each satellites, just like the sense we get from
the RAANs of each LAPAN-A1 and LAPAN-A3, they are increasing in value
with time. For LAPAN-A1 and LAPAN-A3, while for LAPAN-A2, the values
are fluctuating between around 250◦ - 100◦ but in a sense that the fluctuation
occurs crossing the 0◦ value.
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State Vector Analysis
The blue pale blue colored graphs– Fig. 4.22, Fig. 4.23, and Fig. ??, shows
us the satellite expected behavior over time as depicted if we use the SGP4
propagation technique. As expected, just like in the two-body + J2 propaga-
tion, the positions representation would not be constant as depicted by the
two-body propagation. The position representation does create some pattern
but gives a bit more of "abstract" sense in comparison to the other two.

LAPAN-A1 and LAPAN-A3 orbital paths become more apparent. Just like
the two-body + J2 position representation, their X&Y-plane position repre-
sentation gives more "donut" pattern on its motion. Again, what the author
want to explain by use of "donut" as an image of representation is that rather
than cutting through the polar axis of the Earth, the satellites’ orbit just a
little to the side of the axis line, and the accumulated orbiting pattern creates
what it seems like a "donut". The X&Z-plane position representation for both
satellites gives the same sense as the two-body + J2 position representation.
LAPAN-A1 gives more sense that they are indeed orbiting from polar to po-
lar, as the paths are moving "virtually" vertical. While for LAPAN-A3 does
not really give a sense of how it behaves around the equator, unfortunately.

As for LAPAN-A2 it is also more apparent that it is an equatorial orbit.
Looking at the X&Y-plane position representation, the satellite is orbiting the
Earth at an almost circular pattern. Now, Looking at the X&Z-plane position
representation, we can clearly see how the satellite is only behaving around
the equator. Moving on to the spatial position representation, the satellites
behavior becomes more apparent. The satellite is in fact an equatorial orbit
since it never travels through the polar. In addition to that, the satellite
seemed to moves up and down in a sinusoidal-like pattern at a longer period
compared to what the two-body + J2 presented.
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4.3 Propagation Error Analysis (Linear Regression)

For this section the author did the comparison between the propagated state vectors
and the propagated orbital elements to the control data of the TLE historical
data. The comparison lead to the error of each parameter in each respective state
representation. The errors are in absolute value, so that way there will not be
any confusion in the "visualization" of the errors. The error analysis of the orbital
elements in this section was done by implementing the linear regression analysis.

4.3.1 Two-Body Propagation Error

Generally speaking, before getting into the actual value of the error and its anal-
ysis, the two-body propagation are expected to have quite big of a difference in
comparison to the actual data of the TLE historical data. What can be expected
is that, since the two-body does not give any deviation on the orbital elements, the
orbital elements should error should be changing its value– keep on increasing or
decreasing, over time with respect to the actual TLE historical data.
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LAPAN-A1

(a) LAPAN-A1 two-body propagation orbital elements error

(b) LAPAN-A1 two-body propagation state vector error

Figure 4.25: LAPAN-A1 two-body propagation error

100/209



NUMERICAL ANALYSIS OF ORBIT PREDICTION ERRORS OF LAPAN’S SATELLITES

LAPAN-A2

(a) LAPAN-A2 two-body propagation orbital elements error

(b) LAPAN-A2 two-body propagation state vector error

Figure 4.26: LAPAN-A2 two-body propagation error
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LAPAN-A3

(a) LAPAN-A3 two-body propagation orbital elements error

(b) LAPAN-A3 two-body propagation state vector error

Figure 4.27: LAPAN-A3 two-body propagation error
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4.3.2 Error Analysis

A1_2B A2_2B A3_2B
p = 2.6982 + 0.0051 x 0.2911 + 0.0038 x 0.4012 + 5 x
e = 0.0013 + 0 x 0 + 0 x 0.0002 + 0 x
i = 0.1208 + 0 x 0.0015 + 0 x -0.0034 + 0.0001 x

Ω = 121.7552 + 0.0007 x 166.948 + (-0.0076) x 105.0284 + (-0.0076) x
ω = 138.1147 + 0.0007 x 178.7672 + (-0.0015) x 106.503 + 0.0042 x
ν = 120.1327 + 0.0003 x 117.6468 + 0.0015 x 104.7099 + 0.0215 x

Table 4.1: Linear regression equation for two-body propagated
orbital elements

A1_2B A2_2B A3_2B
rx = 3,290.673 + 0.0064 x 5,206.1286 + (-0.0501) x 3,711.978 + 0.1763 x
ry = 5,000.4565 + (-0.0009) x 5,110.5869 + 0.0307 x 4,157.076 + 0.2723 x
rz = 5,122.3508 + 0.0064 x 2,951.3924 + 0.0238 x 4,569.4084 + 0.2451 x
vx = 3.9783 + 0 x 5.8189 + 0 x 5.142 + 0 x
vy = 5.5796 + 0 x 5.7958 + 0 x 4.0677 + 0.0576 x
vz = 5.8677 + 0 x 3.6662 + 0 x 6.8475 + (-0.0007) x

Table 4.2: Linear regression equation for two-body propagated
state vector

A1_2B_R2 A2_2B_R2 A3_2B_R2

p 0.9933 0.999 0.9967
e 0.0277 0.0135 0.0036
i 0.0318 0.0233 0.999

Ω 0.0002 0.0016 0.003
ω 0.0001 0.0001 0.0008
ν 0 0.0001 0.0125
rx 0 0.0001 0.001
ry 0 0 0.0017
rz 0 0 0.0011
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vx 0 0 0.0001
vy 0.0002 0 0
vz 0 0 0.0058

Table 4.3: LAPAN’s satellites correlation value of two-body prop-
agation error

Orbital Elements Error Analysis
The graphs in Fig. 4.25(a), Fig. 4.26(a), and Fig. 4.26(a) shows behavior of
error as well as the regression analysis of each two-body propagated orbital
elements error with respect to the propagation time. To give a more detailed
sense of information, Table. 4.3 gives the correlation of each orbital elements
error with the propagation time. Linear regression equations are given in the
Table. 4.1. By looking at the graphs, it might get a little bit confusing to
determine how the error behave over time, that is why the author will only
describe them as described with the linear regression analysis that the author
had made.

According to the graph and the information of linear regression gathered
from the Table. 4.1, LAPAN-A1 the eccentricity error and the inclination
error does not change their values, at 0.0013◦ and 0.1208◦, over time as their
coefficients are zero. While the other orbital elements do change their values.
The RAAN, the AoP, and the true anomaly do change, but at a very slight
value over time, 0.0007◦ each day for RAAN and AoP. An increase 0.0003◦

each day for the true anomaly. The semiparameter on the other hand keep on
increasing at 0.0051 km each day. Though, to be noted, from the Table. 4.3,
the only one that has strong correlation is the semiparameter, while the others
have very low correlation value.

According to the graph and the information of linear regression gathered from
the Table. 4.1 for two LAPAN-A2, same as the LAPAN-A1, the eccentric-
ity error and the inclination error does not change their values, at 0◦ and
0.0015◦, over time as their coefficients are zero. The semiparameter and the
true anomaly increases their value over time, while the RAAN and the AoP
decreases their value over time. The semiparameter increases 0.0038 km each
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day, and for the true anomaly, it increases 0.0015◦ each day. The RAAN de-
creases 0.0076◦ of its values every day and for the AoP, the values decreases
0.0015◦ every day. Same as the correlation in the LAPAN-A1, the only one
that has strong correlation between the error and the propagation time is the
semiparameter, while the others have very low correlation value.

Lastly, according to the graph and the information of linear regression gath-
ered from the Table. 4.1 for two LAPAN-A3, only the eccentricity that does
not have any changes of value, at 0.0002◦, over time. The RAAN is the
only one that decreases its value over time, while the others increases their
value. The value of error of RAAN, as stated before, decreases at a rate of
0.0076◦per day. The error of semiparameter increases its value at 5 km each
day. The inclination increases its value of error at 0.0001◦ per day, the AoP
at 0.0042◦ per day, and the true anomaly at 0.0215◦ per day. For LAPAN-A3,
the ones that has strong correlation between the error and the propagation
time are the semiparameter and the inclination, while the others, just like
before, have very low correlation value.

State Vector Error Analysis
The graphs in Fig. 4.25(b), Fig. 4.26(b), and Fig. 4.27(b) shows behavior of
error as well as the regression analysis of each state vector error with respect
to the propagation time. To give a more detailed sense of information, Ta-
ble. 4.3 gives the correlation of each state vectors error with the propagation
time. Linear regression equations are given in the Table. 4.2. Looking at the
state vector error graphs, it might gives a lot of confusion on what does it
mean or how does the state vector behave, that is why the author will only
describe them as described with the linear regression analysis that the author
had made.

For LAPAN-A1, the position vectors change over time, while the velocity
vector does not. The rx error and the rz error keep increasing its value over
time at 0.0064 km, for both, every day. while the ry error value decreases by
0.0009 km every day. The velocity vectors, as stated before and according to
the equation of regression on the stated table, does not change its value from
it initial intercept at 3.9783 km

s
, 5.5796 km

s
, and 5.8677 km

s
respectively. Now
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this does not mean that the values are in a constant "line" of dots. The value
varies, but since most of the values are cancelling out each other fluctuation
effects, the equation seemed to give a non changing value.

For LAPAN-A2 case, the position vectors change over time, while the velocity
vector does not same sense as the LAPAN-A1 but different parameters that
changes. The ry error and the rz error keep increasing its value over time at
0.0307 km and 0.0238 km, respectively, every day. while the rx error value
decreases by 0.0501 km every day. The velocity vectors, as stated before and
according to the equation of regression on the stated table, does not change
its value from it initial intercept at 5.8189 km

s
, 5.7958 km

s
, and 3.6662 km

s

respectively. Just like in LAPAN-A1 case, this does not mean that the values
are in a constant "line" of dots. The value varies, but since most of the values
are cancelling out each other fluctuation effects, the equation seemed to give
a non changing value.

For LAPAN-A3 case, the values of the state vectors are changing, except
for the value in the vx for which the equation stated that it stays constant
at 5.142 km

s
. The position vector’s error values increases each day of the

propagation time. for rx, the value increases 0.1763 km per day, for ry the
value increases 0.2723 km per day, and for rz the value increases 0.2451 km
per day. The vy value is also increasing with time at 0.0576 km

s
per day,

while the rz decreases over time at 0.0007 km
s

each day. Again this does not
mean that the values are in a constant "line" of dots. The value varies, but
since most of the values are cancelling out each other fluctuation effects, the
equation seemed to give a non changing value.

The author explicitly separate the correlation values analysis for the state
vector because of the fact that there are very little correlation between the
state vector errors with the propagation time. That might explain why does
the graphs seem so complicated yet the equation does not really give any
changes of value over the propagation time.

106/209



NUMERICAL ANALYSIS OF ORBIT PREDICTION ERRORS OF LAPAN’S SATELLITES

4.3.3 Two-Body + J2 Propagation Error

For the two-body + J2 propagation, the values are expected to have some kind
of periodic deviation towards the actual data of the TLE historical data. What
can be expected is that, since the two-body + J2 mainly effect the change or right
ascension of the ascending node and the argument of perigee and does not give any
significant deviation on the other orbital elements, then, the orbital elements should
should be changing its value– keep on increasing or decreasing. In comparison to
the two-body, there should be less errors.
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LAPAN-A1

(a) LAPAN-A1 two-body + J2 propagation orbital elements error

(b) LAPAN-A1 two-body + J2 propagation state vector error

Figure 4.28: LAPAN-A1 two-body + J2 propagation error
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LAPAN-A2

(a) LAPAN-A2 two-body + J2 propagation orbital elements error

(b) LAPAN-A2 two-body + J2 propagation state vector error

Figure 4.29: LAPAN-A2 two-body + J2 propagation error
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LAPAN-A3

(a) LAPAN-A3 two-body + J2 propagation orbital elements error

(b) LAPAN-A3 two-body + J2 propagation state vector error

Figure 4.30: LAPAN-A3 two-body + J2 propagation error
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4.3.4 Error Analysis

A1_J2 A2_J2 A3_J2
p = 3.4365 + 0.0025 x 0.3526 + 0.0038 x 5.7503 + 0.0006 x
e = 0.0015 + 0 x 0.0008 + 0 x 0.0006 + 0 x
i = 0.1237 + 0 x 0.0031 + 0 x -0.0018 + 0.0001 x

Ω = -11.6521 + 0.0328 x -3.781 + 0.0518 x -11.7375 + 0.0388 x
ω = 120.5276 + 0.0002 x 137.5393 + 0.0026 x 115.0335 + 0.0085 x
ν = 117.0027 + 0.0003 x 145.6562 + 0.0105 x 101.9116 + 0.0254 x

Table 4.4: Linear regression equation for two-body + J2 propa-
gated orbital elements

A1_J2 A2_J2 A3_J2
rx = 4,079.1916 + 0.0241 x 5,269.2541 + (-0.0596) x 3,774.569 + 0.4279 x
ry = 3,942.1179 + 0.0434 x 4,679.6811 + 0.3728 x 4,167.0299 + (-0.0111) x
rz = 5,655.8373 + (-0.1113) x 2,894.0721 + 0.0762 x 4,982.8045 + 0.0164 x
vx = 4.8253 + 0 x 4.9899 + 0.0007 x 4.6019 + 0.0003 x
vy = 4.9757 + 0 x 5.144 + 0.0004 x 5.7819 + (-0.0008) x
vz = 5.7693 + 0 x 3.6257 + 0 x 6.6371 + 0 x

Table 4.5: Linear regression equation for two-body + J2 propa-
gated state vector

A1_J2_R2 A2_J2_R2 A3_J2_R2

p 0.3186 0.9977 0.0063
e 0.0005 0 0
i 0.0351 0.0082 0.9958

Ω 0.3124 0.1371 0.0875
ω 0 0.0003 0.0021
nu 0 0.0035 0.0235
rx 0.0001 0.0001 0.0045
ry 0.0005 0.0034 0
rz 0.0022 0.0003 0
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vx 0.0001 0.0078 0.0015
vy 0.0002 0.0025 0.0096
vz 0 0.0001 0.0041

Table 4.6: LAPAN’s satellites correlation value of two-body + J2
propagation error

Orbital Elements Error Analysis
The graphs in Fig. 4.28(a), Fig. 4.29(a), and Fig. 4.30(a) shows behavior of
error as well as the regression analysis of each two-body + J2 propagated
orbital elements error with respect to the propagation time. Table. 4.6 give
a more detailed sense of information for which it provides the correlation
of each orbital elements error with the propagation time. Linear regression
equations are given in the Table. 4.4. Same sense as the error analysis in the
two-body, the graphs might get a little bit confusing to determine how the
error behave over time, that is why the author will only describe them as
described with the linear regression analysis that the author had made.

According to the graph and the information of linear regression gathered from
the Table. 4.4, the eccentricity error and the inclination error of LAPAN-
A1 do not change their values, at 0.0015◦ and 0.1237◦, over time as their
coefficient values are both zero. While the other orbital elements do change
their values. The RAAN, the AoP, and the true anomaly do increase their
value over time, but at a very slight value, 0.0328◦ each day for the RAAN,
0.0002◦ each day for the AoP, and 0.0003◦ each day for the true anomaly. The
semiparameter on the other hand keep on increasing its value at 0.0025 km
each day. Though, to be noted, from the Table. 4.6, none of the error value
has strong correlation to the propagation time, in fact they all have very low
correlation value.

According to the graph and the information of linear regression gathered from
the Table. 4.4 for two LAPAN-A2, same as the LAPAN-A1, the eccentricity
error and the inclination error does not change their values, at 0.0008◦ and
0.0031◦, over time as their coefficients are zero. All of the other elements are
increasing in values. The semiparameter increases 0.0038 km each day. The
RAAN increases 0.0518◦ of its values every day and for the AoP, the values
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increases 0.0026◦ every day. and for the true anomaly, it increases 0.0105◦

each day. The only one that has strong correlation between the error and
the propagation time is the semiparameter, while the others have very low
correlation value.

Lastly, according to the graph and the information of linear regression gath-
ered from the Table. 4.4 for two LAPAN-A3, only the eccentricity that does
not have any changes of value, at 0.0006◦ over time. While the rest of the or-
bital elements’ error increases with time. The semiparameter error increases
0.0006 km each day, the inclination error increases 0.0001◦ each day, the
RAAN error increases 0.0388◦ each day, the AoP error increases 0.0085◦ each
day, the true anomaly error increases 0.0254◦ each day. Those values are only
according to the regression equations, but then the correlation should always
be in consideration as well, in this case only the inclination error has a strong
correlation to the propagation period, while the others are virtually does not
correlate whatsoever.

State Vector Error Analysis
The graphs in Fig. 4.28(b), Fig. 4.29(b), and Fig. 4.30(b) shows behavior of
error as well as the regression analysis of each state vector error with respect
to the propagation time. Table. 4.6 gives a more detailed sense of information
of the correlation between each state vectors error with the propagation time.
Linear regression equations are given in the Table. 4.5. Looking at the state
vector error graphs, it might gives a lot of confusion on what does it mean or
how does the state vector behave, that is why the author will only describe
them as described with the linear regression analysis that the author had
made.

For LAPAN-A1, the position vectors change over time, while the velocity
vector does not. The only error value that is decreasing over time is the
rz error values at 0.1113 km every day, while the other position vectors are
increasing their values. for rx and ry, they increased their value of error
by 0.0241 km and 0.0434 km, respectively. The velocity vectors, as stated
before and according to the equation of regression on the stated table, does
not change its value from it initial intercept at 4.8253 km

s
, 4.9757 km

s
, and
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5.7693 km
s

respectively. Now this does not mean that the values are in a
constant "line" of dots. The value varies, but since most of the values are
cancelling out each other fluctuation effects, the equation seemed to give a
non changing value.

For LAPAN-A2 case, All of the vectors changes except the vz value for which
it stays at its intercept value of 3.6257 km

s
over time. The only vector that

is decreasing with time is the rx value at which it decreases by 0.0596 km
per day. All of the other vectors are increasing with time. The ry error
increases by 0.3728 km, rz error increases by 0.0762 km, vx error increases
by 0.0007 km

s
, vy error increases by 0.0004 km

s
. Just like in LAPAN-A1 case,

this does not mean that the values are in a constant "line" of dots. The value
varies, but since most of the values are cancelling out each other fluctuation
effects, the equation seemed to give a non changing value.

For LAPAN-A3 case, the values of the state vectors are changing except the
vz at which it stays at 6.6371 km

s
. The only two that are decreasing in value

over time are the ry and vy at which they decrease by 0.0111 km per day and
0.0008 km

s
per day, respectively. The other vectors are increasing in value over

the propagation time. The rx error increases by 0.4279 km, rz error increases
by 0.0164 km, vx error increases by 0.0003 km

s
.

Again this does not mean that the values are in a constant "line" of dots.
The value varies, but since most of the values are cancelling out each other
fluctuation effects, the equation seemed to give a non changing value. The
author explicitly separate the correlation values analysis for the state vector
because of the fact that there are very little correlation between the state
vector errors with the propagation time. That might explain why does the
graphs seem so complicated yet the equation does not really give any changes
of value over the propagation time.
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4.3.5 SGP4Propagation Error

For the SGP4 propagation, the values are also expected to have some kind of
periodic deviation towards the actual data of the TLE historical data. Since the
orbital elements’ values are changing, it is to be expected is that the error values
are relatively much smaller than that of the other methods. As also the increase or
decrease of error should be relatively small. But those are just some assumptions.
The figures and tables below showshow exactly the propagator behave.
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LAPAN-A1

(a) LAPAN-A1 SGP4 propagation orbital elements error

(b) LAPAN-A1 SGP4 propagation state vector error

Figure 4.31: LAPAN-A1 SGP4 propagation error
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LAPAN-A2

(a) LAPAN-A2 SGP4 propagation orbital elements error

(b) LAPAN-A2 SGP4 propagation state vector error

Figure 4.32: LAPAN-A2 SGP4 propagation error
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LAPAN-A3

(a) LAPAN-A3 SGP4 propagation orbital elements error

(b) LAPAN-A3 SGP4 propagation state vector error

Figure 4.33: LAPAN-A3 SGP4 propagation error
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4.3.6 Error Analysis

A1_SGP4 A2_SGP4 A3_SGP4
p = 5.4237 + 0.0005 x 6.4455 + 0.0004 x 7.0386 + (-1) x
e = 0.0016 + 0 x 0.0008 + 0 x 0.0006 + 0 x
i = 0.1219 + 0 x 0.0029 + 0 x -0.0061 + 0.0001 x

Ω = -16.7475 + 0.03 x 0.1677 + 0.0359 x -11.7663 + 0.0327 x
ω = 34.8795 + 0.0284 x 62.1533 + 0.0178 x 54.5802 + 0.0231 x
ν = 115.6339 + 0 x 102.5064 + 0.0381 x 89.0796 + 0.0294 x

Table 4.7: Linear regression equation for SGP4 propagated orbital
elements

A1_SGP4 A2_SGP4 A3_SGP4
rx = 5,207.3519 + 0.0146 x 5,207.3519 + (-0.0653) x 3,959.4613 + 0.2592 x
ry = 5,033.9398 + (-0.0069) x 5,033.9398 + 187 x 3,618.9749 + 0.4341 x
rz = 2,989.0102 + (-0.0074) x 2,989.0102 + (-0.0125) x 5,196.5038 + (-0.1148) x
vx = 5.927 + 0 x 5.927 + 0 x 4.8237 + 0.0001 x
vy = 5.8694 + 0 x 5.8694 + (-0.0001) x 4.723 + 0.0002 x
vz = 3.5995 + 0 x 3.5995 + 0 x 5.2084 + 0.0005 x

Table 4.8: Linear regression equation for SGP4 propagated state
vector

A1_SGP4_R2 A2_SGP4_R2 A3_SGP4_R2

p 0.0278 0.8443 0.0204
e 0.0013 0.0001 0.001
i 0.0336 0.0059 0.9958

Ω 0.2849 0.0794 0.0812
ω 0.2038 0.0127 0.0129
ν 0 0.0429 0.0218
rx 0.0001 0.0001 0.0016
ry 0 0.0008 0.005
rz 0 0 0.0002
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vx 0.0001 0 0.0003
vy 0 0.0001 0.0004
vz 0 0.0002 0.0041

Table 4.9: LAPAN’s satellites correlation value of SGP4 propaga-
tion error

Orbital Elements Error Analysis
The graphs in Fig. 4.31(a), Fig. 4.32(a), and Fig. 4.33(a) shows behavior
of error as well as the regression analysis of each SGP4 propagated orbital
elements error with respect to the propagation time. Table. 4.9 give a more
detailed sense of information for which it provides the correlation of each
orbital elements error with the propagation time. Linear regression equations
are given in the Table. 4.4. Same sense as the error analysis in the two-body,
the graphs might get a little bit confusing to determine how the error behave
over time, that is why the author will only describe them as described with
the linear regression analysis that the author had made.

According to the graph and the information of linear regression gathered
from the Table. 4.7, the eccentricity error, the inclination error, and the
true anomaly error of LAPAN-A1 do not change their values, at 0.0016◦,
0.1219◦, and 115.6339◦ over time as their coefficient values are both zero.
While the other orbital elements do change their values. The RAAN, the
semiparameter, and the true anomaly do increase their value over time, but
at a very slight value, 0.03◦ each day for the RAAN, 0.0284◦ each day for
the AoP, 0.0005 km each day for the semiparameter. Though it is a little bit
frowned upon to take what the equation describes as is, so from the Table. 4.9
we can see how the variable correlates and turns out none of the error value
has strong correlation to the propagation time, in fact they have very low
correlation value.

According to the graph and the information of linear regression gathered from
the Table. 4.7 for two LAPAN-A2, same as the LAPAN-A1, the eccentricity
error and the inclination error does not change their values, at 0.0008◦ and
0.0029◦, over time as their coefficients are zero. All of the other elements are
increasing in values. The semiparameter increases 0.0004 km each day. The
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RAAN increases 0.0359◦ of its values every day and for the AoP, the values
increases 0.0178◦ every day. and for the true anomaly, it increases 0.0381◦

each day. The only one that has strong correlation between the error and
the propagation time is the semiparameter, while the others have very low
correlation value.

Lastly, according to the graph and the information of linear regression gath-
ered from the Table. 4.7 for two LAPAN-A3, only the eccentricity that does
not have any changes of value, at 0.0006◦, over time. While almost all of
the rest of the orbital elements’ error increases with time. The inclination
error increases 0.0001◦ each day, the RAAN error increases 0.0327◦ each day,
the AoP error increases 0.0231◦ each day, the true anomaly error increases
0.0294◦ each day. While the semiparameter error decreases 1 km each day.
Those values are only according to the regression equations, but then the
correlation should always be in consideration as well, in this case only the
inclination error has a strong correlation to the propagation period, while the
others are virtually does not correlate whatsoever.

State Vector Error Analysis
The graphs in Fig. 4.31(b), Fig. 4.32(b), and Fig. 4.33(b) shows behavior of
error as well as the regression analysis of each state vector error with respect
to the propagation time. Table. 4.6 gives a more detailed sense of information
of the correlation between each state vectors error with the propagation time.
Linear regression equations are given in the Table. 4.8. Looking at the state
vector error graphs, it might gives a lot of confusion on what does it mean or
how does the state vector behave, that is why the author will only describe
them as described with the linear regression analysis that the author had
made.

For LAPAN-A1, the position vectors error change over time, while the velocity
vector does not. The only error value that is increasing over time is the rx
error values at 0.0146 km every day, while the other position vectors are
decreasing their values. for ry and rz, they increased their value of error
by 0.0069 km and 0.0074 km, respectively. The velocity vectors, as stated
before and according to the equation of regression on the stated table, does
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not change its value from it initial intercept at 5.927 km
s
, 5.8694 km

s
, and

3.5995 km
s

respectively. Now this does not mean that the values are in a
constant "line" of dots. The value varies, but since most of the values are
cancelling out each other fluctuation effects, the equation seemed to give a
non changing value.

For LAPAN-A2 case, All of the vectors error changes except the vx and vz
value for which it stays at its intercept value of 5.927 km

s
and 3.5995 km

s
over

time. The only vector that is increasing with time is the ry value at which
it increasing by 187 km per day. All of the other vectors are decreasing with
time. The rx error decreases by 0.0653 km, rz error decreases by 0.0125 km,
vy error decreases by 0.0001 km

s
. Just like in LAPAN-A1 case, this does not

mean that the values are in a constant "line" of dots. The value varies, but
since most of the values are cancelling out each other fluctuation effects, the
equation seemed to give a non changing value.

For LAPAN-A3 case, the values of the state vectors error are changing through-
out the propagation period. All of the error values are increasing but the rz
where it decreases its value by 0.1148 km per day. the rx and ry values are
increasing by 0.2592 km and 0.43431 km. As for the velocity vectors error,
vx, vy, and vz, their values are increasing by 0.0001 km

s
per day, 0.0002 km

s

per day, and 0.0005 km
s

per day, respectively.

Again this does not mean that the values are in a constant "line" of dots.
The value varies, but since most of the values are cancelling out each other
fluctuation effects, the equation seemed to give a non changing value. The
author explicitly separate the correlation values analysis for the state vector
because of the fact that there are very little correlation between the state
vector errors with the propagation time. That might explain why does the
graphs seem so complicated yet the equation does not really give any changes
of value over the propagation time.
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4.4 Propagation Error Analysis (Fourier Analysis)

For this section, The same principle applies, all of the errors are in their absolute
values, for a better view of the errors. As stated in the last part of the last
chapter, the seemingly periodic graphs / function were taken and being treated
further for more analysis. The analysis that were done for them are in a form of
Fourier analysis where the author needed to "guess" the period and also the value
of the coefficient or how high the order is to achieve convergence for the particular
function / graph.

LAPAN-A1 LAPAN-A2 LAPAN-A3
Two-Body Inclination - -

Two-Body + J2 Inclination - -
RAAN - -

SGP4 Inclination Semiparameter -
RAAN - -

Table 4.10: The seemingly periodic graphs
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4.4.1 Two-Body Propagation Error

Figure 4.34: Inclination error of LAPAN-A1 satellite using Two-
Body propagation

As depicted in the Table. 4.10, the only one that was seemingly periodic was the
Inclination error for the LAPAN-A1 satellite. As shown also in the Fig. 4.34, the
Inclination error does represent some sort of periodical pattern to it. Taking the
Fourier analysis the number orders that was taken was six (6), due to the fact that
the value of R2 has achieved a satisfactory or convergence value.

y = a0 + a1 cos(wx) + a2 cos(2wx) + a3 cos(3wx)

+ a4 cos(4wx) + a5 cos(5wx) + a6 cos(6wx)

+ b1 sin(wx) + b2 sin(2wx) + b3 sin(3wx)

+ b4 sin(4wx) + b5 sin(5wx) + b6 sin(6wx)

(4.1)

Values

a0 -4.846593e+01
a1 -1.102166e+02
a2 -3.682966e+01
a3 6.328400e+01
a4 4.193391e+01
a5 2.037737e+00
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a6 -1.382274e+00
b1 -4.828093e+01
b2 -1.230913e+02
b3 -6.739144e+01
b4 1.229214e+01
b5 1.238742e+01
b6 9.663160e-01
ω -4.100101e-04
R2 0.9992023578051531

Table 4.11: Coefficient, frequency, and R2 values of the Inclination
error Fourier analysis

From both of the graph, equation, and the table above, it is clear that by using
the Fourier analysis on the graph shows more convergence and shows a higher
relation between the error and the propagation period. Showed by the value of R2

that almost touch the value of 1, or 100% for that matter, a satisfactory relation
were achieved.
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4.4.2 Two-Body + J2 Propagation Error

(a) Inclination error of LAPAN-A1 satellite
using Two-Body + J2 propagation

(b) RAAN error of LAPAN-A1 satellite us-
ing Two-Body + J2 propagation

Figure 4.35: LAPAN-A1 Inclination and RAAN error using Two-
Body + J2 propagation

As depicted in the Table. 4.10, the only ones that were seemingly periodic were the
Inclination error and the RAAN error for the LAPAN-A1 satellite. As shown also in
the Fig. 4.35, the Inclination error does represent some sort of periodical pattern to
it. Taking the Fourier analysis for the Inclination error, the number orders that was
taken was five (5), due to the fact that the value of R2 has achieved a satisfactory
or convergence value. As for the RAAN error the number of order that was taken
was fifty (50), due to the fact that the highest value of R2 were given by the order.

y = a0 + a1 cos(wx) + a2 cos(2wx)

+ a3 cos(3wx) + a4 cos(4wx)

+ a5 cos(5wx) + b1 sin(wx)

+ b2 sin(2wx) + b3 sin(3wx)

+ b4 sin(4wx) + b5 sin(5wx)

(4.2)

Values

a0 1.489364e-01
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a1 -1.243990e-01
a2 -4.479891e-03
a3 -1.191218e-03
a4 2.628061e-04
a5 -5.782975e-04
b1 -3.999076e-02
b2 -1.543241e-03
b3 7.908187e-05
b4 3.293784e-03
b5 3.377461e-03
ω -1.167335e-03
R2 0.9957478752479194

Table 4.12: Coefficient, frequency, and R2 values of the Inclination
error Fourier analysis

y = a0 + a1 cos(wx) + a2 cos(2wx) + a3 cos(3wx)

+ · ··+ a48 cos(2wx) + a49 cos(2wx) + a50 cos(2wx)

+ b1 sin(wx) + b2 sin(2wx) + b3 sin(3wx)

+ · ··+ b48 cos(2wx) + b49 sin(2wx) + b50 sin(2wx)

(4.3)

Values

a0 -4.006370e+04
a1 -1.437767e+04
a2 6.378647e+04
a3 4.174249e+04
a48 -1.063557e+05
a49 3.275605e+04
a50 -4.374729e+03
b1 -2.153780e+04
b2 -1.668072e+04
b3 1.575393e+04
b48 8.152135e+04
b49 -2.946996e+04
b50 4.512614e+03
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ω 4.450230e-04
R2 0.5765167666801361

Table 4.13: Coefficient, frequency, and R2 values of the RAAN
error Fourier analysis

From both of the Fig. 4.35(a), Eq. 4.2, and the Table. 4.12, it is clear that by
using the Fourier analysis on the graph shows more convergence and shows a higher
relation between the error and the propagation period. Showed by the value of R2

that almost touch the value of 1, or 100% for that matter, a satisfactory relation
were achieved.

On the other hand, the Fig. 4.35(b), Eq. 4.3, and the Table. 4.13, it is clear
that in comparison to the linear analysis of the error, the Fourier analysis shows a
more promising / satisfactory results on the behavior of the error with respect to
time. The R2 value of the data fir shows a relation of 0.5 or 50%.
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4.4.3 SGP4 Propagation Error

(a) Inclination error of LAPAN-A1 satellite
using Two-Body + J2 propagation

(b) RAAN error of LAPAN-A1 satellite us-
ing Two-Body + J2 propagation

(c) RAAN error of LAPAN-A2 satellite us-
ing Two-Body + J2 propagation

Figure 4.36: LAPAN-A1 and LAPAN-A2 Inclination, RAAN, and
Semiparameter error using Two-Body + J2 propagation

As depicted in the Table. 4.10, the only ones that were seemingly periodic were
the Inclination error and the RAAN error for the LAPAN-A1 and the LAPAN-A2
satellites. As shown also in the Fig. 4.35, the Inclination error does represent some
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sort of periodical pattern to it. Taking the Fourier analysis for the Inclination
error, the number orders that was taken was five (5), due to the fact that the value
of R2 has achieved a satisfactory or convergence value. As for the RAAN error the
number of order that was taken was twenty seven (27), due to the fact that the
highest value of R2 were given by the order. As for the Semiparameter error the
number of order that was taken was ten (10), due to the fact that the value of R2

has achieved a satisfactory or convergence value.

y = a0 + a1 cos(wx) + a2 cos(2wx)

+ a3 cos(3wx) + a4 cos(4wx)

+ a5 cos(5wx) + b1 sin(wx)

+ b2 sin(2wx) + b3 sin(3wx)

+ b4 sin(4wx) + b5 sin(5wx)

(4.4)

Values

a0 -5.307368e+00
a1 -9.753827e+00
a2 -6.842628e+00
a3 -3.757338e+00
a4 -1.324095e+00
a5 -2.375144e-01
b1 -3.711659e+00
b2 -4.580396e+00
b3 -2.909188e+00
b4 -1.025766e+00
b5 -1.600369e-01
ω -4.437255e-04
R2 0.9975433364084535

Table 4.14: Coefficient, frequency, and R2 values of the Inclination
error Fourier analysis

y = a0 + a1 cos(wx) + a2 cos(2wx) + a3 cos(3wx)

+ · ··+ a25 cos(2wx) + a26 cos(2wx) + a27 cos(2wx)

+ b1 sin(wx) + b2 sin(2wx) + b3 sin(3wx)

+ · ··+ b25 sin(2wx) + b26 cos(2wx) + b27 sin(2wx)

(4.5)
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Values

a0 8.001953e+04
a1 2.597930e+05
a2 8.736742e+04
a3 2.119655e+05
a25 1.269937e+05
a26 2.137609e+05
a27 5.073635e+03
b1 2.586211e+04
b2 1.098418e+05
b3 1.328319e+05
b25 7.102846e+05
b26 9.851845e+02
b27 -2.792145e+04
ω 4.176050e-04
R2 0.35168788501264137

Table 4.15: Coefficient, frequency, and R2 values of the RAAN
error Fourier analysis

y = a0 + a1 cos(wx) + a10 cos(10wx) + a2 cos(2wx)

+ a3 cos(3wx) + a8 cos(8wx) + a9 cos(9wx)

+ b1 sin(wx) + b10 sin(10wx) + b2 sin(2wx)

+ b3 sin(3wx) + b8 sin(8wx) + b9 sin(9wx)

(4.6)

Values

a0 6.878166e+00
a1 -2.686397e-01
a2 -1.905744e-02
a3 1.591948e-01
a8 -6.105143e-02
a9 1.568347e-02
a10 5.589840e-02
b1 1.874879e-02
b2 1.937725e-01
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b3 2.924714e-03
b8 -4.549744e-02
b9 2.305028e-02
b10 -5.776247e-03
ω 2.939877e-03
R2 0.9632764548800795

Table 4.16: Coefficient, frequency, and R2 values of the Semipa-
rameter error Fourier analysis

From both of the Fig. 4.36(a), Eq. 4.4, and the Table. 4.14, it is clear that by
using the Fourier analysis on the error data shows more convergence and shows a
higher relation between the error and the propagation period. Showed by the value
of R2 that almost touch the value of 1, or 100% for that matter, a satisfactory
relation were achieved.

On the other hand, the Fig. 4.36(b), Eq. 4.5, and the Table. 4.15, it is clear
that in comparison to the linear analysis of the error, the Fourier analysis shows a
more promising / satisfactory results on the behavior of the error with respect to
time. The R2 value of the data fir shows a relation of 0.35 or 35%.

Lastly, the Fig. 4.36(c), Eq. 4.6, and the Table. ??, it is clear that by using
the Fourier analysis on the error data shows more convergence and shows a higher
relation between the error and the propagation period. The R2 value of the data
fir shows a relation of almost 1 or 100%.
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CHAPTER 5

SUMMARY, CONCLUSION,

RECOMMENDATION

5.1 Summary

Based on what have been shown and described in this thesis, this thesis can be
summarized as the following:

1. The author had successfully acquired and extracted the needed reference
values from the TLE historical data from the stated website.

2. The extractor and convertor tools that were used for the "actual" data, TLE
historical data, worked well. There are a few consideration to be made for
the extractor, but is sufficient enough as for the author to conduct this thesis.

3. The author has "successfully" build the conversion tools and also the nu-
merical modeling fo the propagator for this research. The quotation remarks
that they are in fact working as they intended to, but there are rooms for
improvements in utilizing them.

4. The author has successfully asses how the propagated orbital elements and
state vectors behaves over the period of time.

5. The author has successfully compares the deviation or error of values between
the propagation values and the actual TLE values.

6. Evaluation of the errors of propagation of each propagation method has been
done in the Chapter 4, the orbital elements are relatively has more correla-
tion in comparison to the state vectors, although this is just the matter of
relativistic view on both results.
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7. The evaluation shows the need of different treatment on how the results are
analyzed, whether it is by using the regression analysis or Fourier series.

5.2 Conclusion

Based on what have been shown and described in this thesis, especially in the result
of the error analysis, this thesis can be concluded as the following:

1. Generally, based on the equations of regression for all of the propagation
methods of each satellites, the values of coefficient shows a promising numbers
on how the errors are behaving over the propagation period. But if the author
would only look at the equations all by themselves, then the author would
be lying to say that they are relatively a neat "analysis". The author need
also to consider about each orbital elements and state vectors R2 values, for
it determines how the variables correlates with the propagation time. Turns
out that the values of R2 for almost all of the variable are sadly unsatisfying
to see. The enumerated list after this would give a little more detail on the
linear regression stand point.

Two-Body Propagation

• The semiparameter errors for all of the satellites gave much of linear
sense to all of them. From the correlation perspective the value of the R2,
all of them gave 0.99 value. This implies that the errors were analyzed
best with this method of analysis.

• The other one that was best suited with this method of analysis was the
Inclination error of LAPAN-A3 satellite. From the correlation perspec-
tive the value of the R2, it gave the value of 0.99.

Two-Body + J2 Propagation

• The semiparameter error of LAPAN-A2 satellite was best fitted with
this method of analysis. From the correlation perspective the value of
the R2, it gave the value of 0.99.
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• The Inclination error of LAPAN-A2 satellite was also best fitted with
this method of analysis. From the correlation perspective the value of
the R2, it gave the value of 0.99.

SGP4 Propagation

• The Inclination error of LAPAN-A3 satellite was best fitted with this
method of analysis. From the correlation perspective the value of the
R2, it gave the value of 0.99.

2. As seen not all of the errors were best suited with the linear regression analy-
sis. This is due to some of the graphs exhibited some quasi-periodic pattern to
them. To actually see the behavior over time of these quasi-periodic graphs,
the author took them to be further analyzed by using Fourier analysis. The
R2 values gave some better values of correlation after they went through this
analysis. This gave some satisfactory results in analyzing the errors as well.
The enumerated list after this would give a little more detail on the Fourier
analysis stand point.

Two-Body Propagation

• The only one that was best fitted with this method of analysis was the
Inclination error of LAPAN-A1 satellite. From the correlation perspec-
tive the value of the R2, it gave the value of 0.99.

Two-Body + J2 Propagation

• The Inclination error of LAPAN-A1 satellite was best fitted with this
method of analysis. From the correlation perspective the value of the
R2, it gave the value of 0.99.

• The RAAN error of LAPAN-A1 satellite was also best fitted with this
method of analysis. From the correlation perspective the value of the
R2, it gave the value of 0.57. This might not seem like much of an
improvement, but in comparison to the linear regression stand point,
this method gave better fiting.

SGP4 Propagation
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• The Inclination error of LAPAN-A1 satellite was best fitted with this
method of analysis. From the correlation perspective the value of the
R2, it gave the value of 0.99.

• The RAAN error of LAPAN-A1 satellite was best fitted with this method
of analysis. From the correlation perspective the value of the R2, it gave
the value of 0.35. This might not seem like much, but in comparison to
the linear regression, this method gave the best fit.

• The semiparameter error of LAPAN-A2 satellite was best fitted with
this method of analysis. From the correlation perspective the value of
the R2, it gave the value of 0.96. The semiparameter error was also done
with the linear regression, and gave a value of 0.84 of R2, but as can be
seen Fourier analysis gave the best fit.

3. From the additional analysis that were done for the seemingly periodic values
of errors in the propagations using the Fourier analysis, it shows that the
periodic values are more sufficient to be analyzed using this method of analysis
in comparison to the linear regression analysis. This due to the nature of
the Fourier analysis that replicates the periodical functions as the sum of
simpler trigonometrical functions. Although there are some exceptions to be
considered also when using the Fourier analysis.

4. The consideration that can be stated now is that because Fourier analysis is
good for periodic functions. Although any functions can virtually be proven
by Fourier analysis, but the order used to prove the functions as simple sum
of sines and cosines would lead to a very lengthy iteration. in addition, due
to the same nature, the analysis would only be accurate for some period of
time. Say there is this linear function that is represented with the Fourier
analysis, but since there is a need to state the period of the function, the
analysis would only be valid for "that" span of period, and then reset back
to the initial coefficient value.

5. A line that can be drawn with this analysis is that, Each and every satellites
gave different behavior in their state. Different propagation method also
gave different behavior on the prediction of the state. Thus the errors would

136/209



NUMERICAL ANALYSIS OF ORBIT PREDICTION ERRORS OF LAPAN’S SATELLITES

also be different for each and every propagation and also for each and every
satellites. This intrigues a sense that there should be different kind of analysis
to be implemented for each and every elements for each and every satellites.

6. Another line that can be drawn from this event is that there might be some
uncertainties in the simulation model of the propagation method, rather than
the base mathematical model of the propagation. What the author mean is
that, since the author propagated the state from the very first value of the
historical data and evaluate the values at the same time as the other updates,
there has got to be some accumulated errors in the propagation.

5.3 Recommendation

Based on the results of error analysis, the author can draw some lines for future
works that can be developed from this research:

1. The mathematical modeling of the two-body and the two-body + J2 propa-
gation by the author should be robust enough to be used. But, there is still
a need to have some consideration on how to use it.

2. The simulation regimes or the propagation regimes that were used in this the-
sis only takes the very first data of the historical data as the initial state and
propagate it through the whole time, which presumably causes some errors
to accumulate bigger as the time goes. There might need a consideration to
update the initial state of the propagation. What it means is that, after the
propagation of the next evaluated time, the value of the initial state would
become that of the value in the time of evaluation.

3. In regards to the propagation method, the author uses the time difference
of every epochs with respect to the first epoch of the historical data. That
might also be the cause of why the error analysis looked the way as depicted
in the previous chapter. There should be a consideration on taking the time
difference between each epoch rather than what the author did. This method
should also be in conjunction with the previous point of recommendation to
further reduces of the accumulated errors.
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4. As this thesis was intended for LAPAN’s satellites use only as the subject of
interest, this might be too biased for different kind of propagation methods,
let alone the modeling of the simulation of the propagation. There need to be
an assessment for other kind of orbit based on the elevation or eccentricity for
example. That might get a little confusing, but that way the errors might be
analyzed better since there are many samples of satellites, rather than many
samples of propagation time.

5. In regards to the error analysis, the use of the two methods that were ex-
plained and implemented should selectively be used for each parameters. As
proven also by the analysis, the errors gave pattern to them, either periodical
patter, linear, or chaotic pattern. Meaning that the analysis cannot be done
explicitly by one method only.

6. There should be an improvement of the error analysis regime, especially in
the modeling of the fit. In addition there should be other method of error
analysis to be taken into considerations. Sure linear regression is one of the
most straight forward one to use, but the other kinds should also be used for
a more robust result of error behavior of each propagation method.

7. In addition there is a need to consider taking different approach on the method
of analysis for each and every parameters that might provide better fitting
in comparison to the already used ones in this thesis. e.g., Kalman Filter,
Spectral Method, and Machine Learning.

8. There might be some consideration to use the analysis right off the bat after
the extraction of the TLE data. This is because the data itself shows some
kind of pattern to them. Again, using the Fourier transform for the seemingly
periodical values would sufficiently give some neat results. Also the use of
linear regression for the more linear patterned values would also give relatively
neat predictions to the data. Again these two methods, or maybe with the
use of other methods, would be sufficient enough to guess the future state
right off the bat.

9. Lastly, for practical recommendation, it is highly recommended to of course
use the SGP4 propagation as the method of prediction. But, there is also a
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need to use the errors analysis, in the predictions, using selective method of
analysis to give an idea regarding the predictions while left in the blindspots
of updates.
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Appendix A: Constants for the Codes

"""
This python file contains the necessary constants for astrodynamics
computational tool project
"""

MIU_N = 1.0 # normalized gravitational constant
ER_N = 1.0

# Astrodynamic Constants (JGM-2) in SI-Units

# Geocentric
ER = 6378.1363 # km
TU = 806.81099130673 # s
VU = 7.905366149846 # km/s
MIU = 3.986004415e5 # km3/s2
J2 = 0.0010826269

from datetime import datetime, timedelta
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from Constants import *

def KepEqtnE(M, e):
"""
Description
-----------
This function is intended for calculating the Eccentric Anomaly (E_nu) from Mean Anomaly and Eccentricity

Parameters
----------
M : Mean Anomaly taken from the TLE.
e : Eccentricity taken from the TLE.

Returns
-------
E_nu : returns the Eccentric Anomaly with a float type.

"""
if (M > -np.pi and M < 0) or M > np.pi:

E0 = M - e
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else:
E0 = M + e

dE = 0.1
while dE > 1e-8:

E_nu = E0 + (M - E0 + e * np.sin(E0)) / (1 - e * np.cos(E0))
dE = np.abs(E_nu - E0)
E0 = E_nu

return E_nu

def E2nu(E, e):
"""
Description
-----------
This function is intended for calculating the True Anomaly (nu) from Eccentric Anomaly and Eccentricity

Parameters
----------
E : Eccentric Anomaly from the KepEqtnE function.
e : Eccentricity taken from the TLE.

Returns
-------
nu : returns the True Anomaly with a float type.

"""
sinnu = (np.sin(E) * np.sqrt(1 - e ** 2)) / (1 - e * np.cos(E))
cosnu = (np.cos(E) - e) / (1 - e * np.cos(E))

nu = np.arctan2(sinnu, cosnu)

return nu

def M2nu(M, e):
"""
Description
-----------
This function is intended for calculating the True Anomaly (nu) from Mean Anomaly

Parameters
----------
M : Mean Anomaly taken from the TLE.
e : Eccentricity taken from the TLE.

Returns
-------
nu : returns the True Anomaly with a float type.
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"""
E = KepEqtnE(M, e)
nu = E2nu(E, e)

return nu

def testnu(E, e):

above = 1 + e
below = 1 - e
root = np.sqrt(above / below)

last = E / 2

half = root * np.tan(last)

nu = np.arctan(half) * 2

return nu

def tle_ephemeris(TLE):
"""
Description
-----------
This function is for extracting the TLE ephemeris into a list of COEs of the particular satellite

Parameters
----------
TLE : a txt file that contains a satellite's TLE ephemeris

Returns
-------
returns a list containing the satellite's COEs (p, e, i, omega, w, nu)

"""
df = pd.read_table(TLE, header=None).values

line1 = df[1, 0]
line2 = df[2, 0]

year = datetime(int("20" + line1[18:20]), month=1, day=1)
day = timedelta(float(line1[20:32]))
epoch = year + day

time = epoch
Inclination = float(line2[8:16])
RAAN = float(line2[17:25])
Eccentricity = float("." + line2[26:33])
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AOP = float(line2[34:42])

MeanAnomaly = float(line2[43:51])

nu = np.rad2deg(M2nu(MeanAnomaly, Eccentricity))

n = float(line2[52:63])
maj_axis = (MIU ** (1 / 3) / ((2 * n * np.pi / 86400) ** (2 / 3))) / ER

semiparameter = maj_axis * (1 - (Eccentricity ** 2))

coes_t = [time, semiparameter, Eccentricity, Inclination, RAAN, AOP, nu]

return coes_t

def tle_ephemerides(TLE):
"""
Descriptions
------------
This function is for extracting the TLE ephemerides into a list of dictionaries that contains the COEs of the particular satellite

Parameters
----------
TLE : a txt file that contains a satellite's TLE ephemerides

Returns
-------
Returns a list of dictionaries containing the satellite's COEs (p, e, i, omega, w, nu)
"""
df = pd.read_table(TLE, header=None).values

coes = []

for i in range(df.shape[0]):
if i % 2 == 0:

line1 = df[i, 0]
line2 = df[i + 1, 0]

year = datetime(int("20" + line1[18:20]), month=1, day=1)
day = timedelta(float(line1[20:32]))
epoch = year + day

x0 = {"Epoch": epoch}
x1 = {"Inclination": float(line2[8:16])}
x2 = {"Right Ascension of the Ascending Node": float(line2[17:25])}
x3 = {"Eccentricity": float("." + line2[26:33])}
x4 = {"Argument of Perigee": float(line2[34:42])}

MeanAnomaly = float(line2[43:51])
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nu = np.rad2deg(M2nu(MeanAnomaly, float("." + line2[26:33])))
if nu < 0:

nu = nu + 360
else:

nu = nu

x5 = {"True Anomaly": nu}

n = float(line2[52:63])
maj_axis = (MIU ** (1 / 3) / ((2 * n * np.pi / 86400) ** (2 / 3))) / ER

x6 = {"Semiparameter": (maj_axis * (1 - (float("." + line2[26:33]) ** 2)))}

coes.append({**x0, **x6, **x3, **x1, **x2, **x4, **x5})

coes_df = pd.DataFrame(coes)
coes_df.drop_duplicates(subset=["Epoch"], inplace=True)
coes_np = coes_df.to_numpy()

return coes_np

import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import solve_ivp
from Constants import ER, ER_N, MIU_N, TU, VU, MIU, J2

# unit vectors
I = np.array([1, 0, 0])
J = np.array([0, 1, 0])
K = np.array([0, 0, 1])

def rv2coe(state):
"""
Description
-----------
This function converts the state vector of a satellite, with respect to a celestial body, to the classical orbital elements

Parameters
----------
state : it is an array of state vector or the position vector and the velocity vector of the satellite (rx, ry, rz, vx, vy, vz).

Returns
-------
coe : Returns as a list of orbital elements

p = semiparameter
e = eccentricity
i = inclination
omega = right ascension of the ascending node
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w = argument of periapsis
nu = true anomaly

"""
rx, ry, rz, vx, vy, vz = state

R = np.array([rx, ry, rz])
V = np.array([vx, vy, vz])

R_mag = np.linalg.norm(R)
V_mag = np.linalg.norm(V)

# defining specific angular momentum
h_vec = np.cross(R, V)
h_mag = np.linalg.norm(h_vec)

# defining node vector
n_vec = np.cross(K, h_vec)
n_mag = np.linalg.norm(n_vec)

# defining eccentricity
e_vec = (1 / MIU_N) * (((V_mag ** 2 - (MIU_N / R_mag)) * R) - ((np.dot(R, V)) * V))
e_mag = np.linalg.norm(e_vec)

# defining specific mechanical energy
xi = ((V_mag ** 2) / 2) - (MIU_N / R_mag)

# defining the semiparameter and the semimajor axis
if e_mag != 1:

a = -(MIU_N / ((2 * xi)))
p = a * (1 - e_mag ** 2)

else:
p = h_mag ** 2 / MIU_N
a = np.inf

# defining inclination
cos_i = h_vec[2] / h_mag
i = np.arccos(cos_i) * (180 / np.pi)

# defining the longitude of the ascending node
cos_omega = (n_vec[0]) / (n_mag)
omega = np.arccos(cos_omega) * (180 / np.pi)
if n_vec[1] < 0:

omega = 360 - omega
else:

omega = omega

# defining the argument of perigee
cos_w = (np.dot(n_vec, e_vec)) / (n_mag * e_mag)
w = np.arccos(cos_w) * (180 / np.pi)
if e_vec[2] < 0.0:
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w = 360 - w
else:

w = w

# defining the true anomaly
cos_nu = (np.dot(e_vec, R)) / (e_mag * R_mag)
nu = np.arccos(cos_nu) * (180 / np.pi)
if np.dot(R, V) < 0:

nu = 360 - nu
else:

nu = nu

coe = [p, e_mag, i, omega, w, nu]

return coe

def coe2rv(coe):
"""
Description
-----------
This function definition converts the classical orbital elemnts to the state vector, with respect to a celestial body,

Parameters
----------
coe : a list of orbital elements that consists of:

p = semiparameter
e = eccentricity
i = inclination
omega = right ascension of the ascending node
w = argument of periapsis
nu = true anomaly

Returns
-------
state : Returns as a list of state vector
"""
[p, e, i, omega, w, nu] = coe
i_rad = np.radians(i)
omega_rad = np.radians(omega)
w_rad = np.radians(w)
nu_rad = np.radians(nu)

r_p = (p * np.cos(nu_rad)) / (1 + (e * np.cos(nu_rad)))
r_q = (p * np.sin(nu_rad)) / (1 + (e * np.cos(nu_rad)))
r_w = 0
r_pqw = np.array([r_p, r_q, r_w])

v_p = -(np.sqrt(MIU_N / p)) * (np.sin(nu_rad))
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v_q = (np.sqrt(MIU_N / p)) * (e + np.cos(nu_rad))
v_w = 0
v_pqw = np.array([v_p, v_q, v_w])

m11 = (np.cos(omega_rad) * np.cos(w_rad)) - (
np.sin(omega_rad) * np.sin(w_rad) * np.cos(i_rad)

)
m12 = (-np.cos(omega_rad) * np.sin(w_rad)) - (

np.sin(omega_rad) * np.cos(w_rad) * np.cos(i_rad)
)
m13 = np.sin(omega_rad) * np.sin(i_rad)

m21 = (np.sin(omega_rad) * np.cos(w_rad)) + (
np.cos(omega_rad) * np.sin(w_rad) * np.cos(i_rad)

)
m22 = (-np.sin(omega_rad) * np.sin(w_rad)) + (

np.cos(omega_rad) * np.cos(w_rad) * np.cos(i_rad)
)
m23 = -np.cos(omega_rad) * np.sin(i_rad)

m31 = np.sin(w_rad) * np.sin(i_rad)
m32 = np.cos(w_rad) * np.sin(i_rad)
m33 = np.cos(i_rad)

rot_matrix = np.array([[m11, m12, m13], [m21, m22, m23], [m31, m32, m33]])

R_ijk = np.dot(rot_matrix, r_pqw)
V_ijk = np.dot(rot_matrix, v_pqw)

state = np.hstack([R_ijk, V_ijk])

return state

def twobody(time, state):
"""
Description
-----------
This function is to find the gradient of two-body poblem that will be used in the solve_ivp solver, of the propagation method funtion

Parameters
----------
time : time parameter (starting, end) used in the solve_ivp solver
state : the state vector (rx,ry,rz,vx,vy,vz) that will be used in the solve_ivp solver

Returns
-------
state_dot : the gradient of the twobody problem to be used in the solve_ivp solver
"""
rx, ry, rz, vx, vy, vz = state
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r_vec = np.array([rx, ry, rz])

r_mag = np.linalg.norm(r_vec)

ax, ay, az = ((-MIU_N) / (r_mag ** 3)) * r_vec

return [vx, vy, vz, ax, ay, az]

def twobody_j2(time, state):
"""
Description
-----------
This function is to find the gradient of two-body + J2 poblem that will be used in the solve_ivp solver, of the propagation method funtion

Parameters
----------
time : time parameter (starting, end) used in the solve_ivp solver
state : the state vector (rx,ry,rz,vx,vy,vz) that will be used in the solve_ivp solver

Returns
-------
state_dot : the gradient of the twobody problem to be used in the solve_ivp solver

"""
rx, ry, rz, vx, vy, vz = state

r_vec = np.array([rx, ry, rz])

r_mag = np.linalg.norm(r_vec)

k = 1.5 * MIU_N * J2 * (ER_N / r_mag) ** 2
ax = -MIU_N * r_vec[0] / r_mag ** 3 * (1 - k * (5 * r_vec[2] ** 2 / r_mag ** 3 - 1))
ay = -MIU_N * r_vec[1] / r_mag ** 3 * (1 - k * (5 * r_vec[2] ** 2 / r_mag ** 3 - 1))
az = -MIU_N * r_vec[2] / r_mag ** 3 * (1 - k * (5 * r_vec[2] ** 2 / r_mag ** 3 - 3))

return (vx, vy, vz, ax, ay, az)

def prop2body(T, Y):
"""
Descriptions
------------
This function is intended for the propagtion method of the stated mathematical model of the 2B perturbation model / gradient of 2B

Parameters
----------
T : Timestamp (epoch) from the TLE data.
Y : Initial state vector.
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Returns
-------
Returns an array of propagated state vectors according to timestamps.
"""
period = np.array([])

for i in range(len(T)):
stamp2date = T[i].to_pydatetime()
date2float = stamp2date.timestamp()
period = np.append(period, date2float / TU)

difference = np.array([])

ts = 0
tf = period[-1] - period[0]
p = 1

while p in range(len(period)):
haiya = period[p] - period[0]
difference = np.append(difference, haiya)
p = p + 1

list_dt = difference.tolist()
dt = list(set(list_dt))
dt.sort()

atol = 1e-08
rtol = 1e-13

sol = solve_ivp(
twobody, [ts, tf], Y, method="RK45", atol=atol, rtol=rtol, t_eval=dt

)

return sol

def propj2(T, Y):
"""
Descriptions
------------
This function is intended for the propagtion method of the stated mathematical model of the 2BJ2 perturbation model / gradient of 2BJ2

Parameters
----------
T : Timestamp (epoch) from the TLE data.
Y : Initial state vector.

Returns
-------
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Returns an array of propagated state vectors according to timestamps.
"""
period = np.array([])

for i in range(len(T)):
stamp2date = T[i].to_pydatetime()
date2float = stamp2date.timestamp()
period = np.append(period, date2float / TU)

difference = np.array([])
p = 1
while p in range(len(period)):

haiya = period[p] - period[0]
difference = np.append(difference, haiya)
p = p + 1

list_dt = difference.tolist()
dt = list(set(list_dt))
dt.sort()

atol = 1e-08
rtol = 1e-13
ts = 0
tf = period[-1] - period[0]

sol = solve_ivp(
twobody_j2, [ts, tf], Y, method="RK45", atol=atol, rtol=rtol, t_eval=dt

)

return sol

def coes2rvs(coes):
"""
Descriptions
------------
Turning an array of list of COEs into an array of list of State Vector

Parameters
----------
coes : an array of list containg COEs

Returns
-------
Returnin state vectors in a form of array

"""
coes = coes[:, 1:]
rvs = np.array([])
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for q in range(len(coes)):
tc = coe2rv(coes[q])
rvs = np.append(rvs, tc)

return rvs.reshape(-1, 6, order="F")

def rvs2coes(Y):
"""
Descriptions
------------
Turning an array of list of State Vector into an array of list of COEs

Parameters
----------
Y : an array of list containg State Vectors

Returns
-------
Returnin COEs in a form of array

"""
state = Y
coes = np.array([])

for q in range(len(state)):
tc = rv2coe(state[q])
coes = np.append(coes, tc)

return coes.reshape(6, -1, order="F")

import numpy as np
import pandas as pd
from numpy import linalg as LA
from Constants import TU, VU, ER

def TLE_COES(tle):
"""
Parameters
----------
tle : a numpy array of epochs and coes

Returns
-------
tlecoes : a dataframe of epochs and coes
"""
headers = ["Epoch", "p_i", "e_i", "i_i", "RAAN_i", "AoP_i", "nu_i"]
contents = tle

tlecoes = pd.DataFrame(data=contents, columns=headers)
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tlecoes["p_i"] = tlecoes["p_i"] * ER
tlecoes[["p_i", "e_i", "i_i", "RAAN_i", "AoP_i", "nu_i"]] = (

tlecoes[["p_i", "e_i", "i_i", "RAAN_i", "AoP_i", "nu_i"]].astype(float).round(4)
)

return tlecoes

def TLE_RVS(tle, tle_rvs):
"""
Parameters
----------
tle : a numpy array of epochs and coes
tle_rvs : a numpy array of converted rvs

Returns
-------
tlervs : a dataframe of epochs and rvs
"""
epochs = tle[:, 0].reshape(-1, 1)

headers = ["Epoch", "rx_i", "ry_i", "rz_i", "vx_i", "vy_i", "vz_i"]
contents = np.hstack((epochs, tle_rvs))

tlervs = pd.DataFrame(data=contents, columns=headers)

tlervs[["rx_i", "ry_i", "rz_i"]] = (
(tlervs[["rx_i", "ry_i", "rz_i"]] * ER).astype(float).round(2)

)
tlervs[["vx_i", "vy_i", "vz_i"]] = (

(tlervs[["vx_i", "vy_i", "vz_i"]] * VU).astype(float).round(3)
)

return tlervs

def PROP_COES(tle, coes):
"""
Parameters
----------
tle : a numpy array of epochs and coes
coes : a numpy array of propagated coes

Returns
-------
propcoes : a dataframe of epochs and propagated coes
"""
epochs = tle[:, 0].reshape(-1, 1)
coes_i = tle[0, 1:]
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coes = np.vstack((coes_i, coes.transpose()))

headers = ["Epoch", "p_f", "e_f", "i_f", "RAAN_f", "AoP_f", "nu_f"]
contents = np.hstack((epochs, coes))

propcoes = pd.DataFrame(data=contents, columns=headers)

propcoes["p_f"] = propcoes["p_f"] * ER
propcoes[["p_f", "e_f", "i_f", "RAAN_f", "AoP_f", "nu_f"]] = (

propcoes[["p_f", "e_f", "i_f", "RAAN_f", "AoP_f", "nu_f"]]
.astype(float)
.round(4)

)

return propcoes

def PROP_RVS(tle, tle_rvs, rvs):
"""
Parameters
----------
tle : a numpy array of epochs and coes
tle_rvs : a numpy array of rvs
rvs : a numpy array of propagated rvs

Returns
-------
proprvs : a dataframe of epochs and propagated rvs
"""
epochs = tle[:, 0].reshape(-1, 1)
rvs_i = tle_rvs[0]

rvs = np.vstack((rvs_i, rvs.transpose()))

headers = ["Epoch", "rx_f", "ry_f", "rz_f", "vx_f", "vy_f", "vz_f"]
contents = np.hstack((epochs, rvs))

proprvs = pd.DataFrame(data=contents, columns=headers)

proprvs[["rx_f", "ry_f", "rz_f"]] = (
(proprvs[["rx_f", "ry_f", "rz_f"]] * ER).astype(float).round(2)

)
proprvs[["vx_f", "vy_f", "vz_f"]] = (

(proprvs[["vx_f", "vy_f", "vz_f"]] * VU).astype(float).round(3)
)

return proprvs
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def ERROR_COES(tle, coes):
"""
Parameters
----------
tle : a numpy array of epochs and coes
coes : a numpy array of propagated coes

Returns
-------
errorcoes : a dataframe of coes propagation errors
"""
epochs = tle[1:, 0].reshape(-1, 1)
tle = tle[1:, 1:]
coes = coes.transpose()

diff = abs(coes - tle)

headers = ["Epoch", "p_e", "e_e", "i_e", "RAAN_e", "AoP_e", "nu_e"]
contents = np.hstack((epochs, diff))

errorcoes = pd.DataFrame(data=contents, columns=headers)

errorcoes["p_e"] = errorcoes["p_e"] * ER
errorcoes[["p_e", "e_e", "i_e", "RAAN_e", "AoP_e", "nu_e"]] = (

errorcoes[["p_e", "e_e", "i_e", "RAAN_e", "AoP_e", "nu_e"]]
.astype(float)
.round(4)

)

return errorcoes

def ERROR_RVS(tle, tle_rvs, rvs):
"""
Parameters
----------
tle : a numpy array of epochs
tle_rvs : a numpy array of epochs and rvs
coes : a numpy array of propagated rvs

Returns
-------
errorrvs : a dataframe of rvs propagation errors
"""
epochs = tle[1:, 0].reshape(-1, 1)
rvs = rvs.transpose()

diff = abs(rvs - tle_rvs[1:])

headers = ["Epoch", "rx_e", "ry_e", "rz_e", "vx_e", "vy_e", "vz_e"]
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contents = np.hstack((epochs, diff))

errorrvs = pd.DataFrame(data=contents, columns=headers)

errorrvs[["rx_e", "ry_e", "rz_e"]] = (
(errorrvs[["rx_e", "ry_e", "rz_e"]] * ER).astype(float).round(2)

)
errorrvs[["vx_e", "vy_e", "vz_e"]] = (

(errorrvs[["vx_e", "vy_e", "vz_e"]] * VU).astype(float).round(3)
)

return errorrvs

def ALL_IN1(coes, rvs):
rvs_drop = rvs.drop(["Epoch"], axis=1)
tleall = pd.concat([coes, rvs_drop], axis=1)

return tleall

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.datasets import load_boston
from Main_File import *
from Constants import *
from sgp4 import *

def coes_analysis(reg):
ylabels_ = [

"error (km)",
"error (deg)",
"error (deg)",
"error (deg)",
"error (deg)",
"error (deg)",

]
titles = [

"Semiparameter",
"Eccentricity",
"Inclination",
"Right Ascension of the Ascending Node",
"Argument of Perigee",
"True Anomaly",

]
x = reg[0]

n_rows = 2
n_cols = 3

159/209



NUMERICAL ANALYSIS OF ORBIT PREDICTION ERRORS OF LAPAN’S SATELLITES

FIG, axs = plt.subplots(n_rows, n_cols, sharex=True, figsize=(18, 10))

axs[0, 0].scatter(x, reg[1], color="b")
axs[0, 1].scatter(x, reg[2], color="g")
axs[0, 2].scatter(x, reg[3], color="r")
axs[1, 0].scatter(x, reg[4], color="c")
axs[1, 1].scatter(x, reg[5], color="m")
axs[1, 2].scatter(x, reg[6], color="y")

axs[0, 0].plot(x, reg[7].predict(x), color="black", linewidth=3)
axs[0, 1].plot(x, reg[8].predict(x), color="black", linewidth=3)
axs[0, 2].plot(x, reg[9].predict(x), color="black", linewidth=3)
axs[1, 0].plot(x, reg[10].predict(x), color="black", linewidth=3)
axs[1, 1].plot(x, reg[11].predict(x), color="black", linewidth=3)
axs[1, 2].plot(x, reg[12].predict(x), color="black", linewidth=3)

index_coe = 0
index_ylabel = 0
for m in range(n_rows):

for n in range(n_cols):
axs[m, n].set_title(titles[index_coe])
axs[m, n].set_xlabel("Time (Day)")
axs[m, n].set_ylabel(ylabels_[index_ylabel])
axs[m, n].grid("minor")
index_coe = index_coe + 1
index_ylabel = index_ylabel + 1

for tick in axs[m, n].get_xticklabels():
tick.set_rotation(45)

plt.subplots_adjust(wspace=(0.24))
plt.show()

return FIG

def rvs_analysis(reg):
ylabels_ = [

"error (km)",
"error (km)",
"error (km)",
"error (km/s)",
"error (km/s)",
"error (km/s)",

]
titles = ["rx", "ry", "rz", "vx", "vy", "vz"]
x = reg[0]

n_rows = 2
n_cols = 3
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FIG, axs = plt.subplots(n_rows, n_cols, sharex=True, figsize=(18, 10))

axs[0, 0].scatter(x, reg[1], color="b")
axs[0, 1].scatter(x, reg[2], color="g")
axs[0, 2].scatter(x, reg[3], color="r")
axs[1, 0].scatter(x, reg[4], color="c")
axs[1, 1].scatter(x, reg[5], color="m")
axs[1, 2].scatter(x, reg[6], color="y")

axs[0, 0].plot(x, reg[7].predict(x), color="black", linewidth=3)
axs[0, 1].plot(x, reg[8].predict(x), color="black", linewidth=3)
axs[0, 2].plot(x, reg[9].predict(x), color="black", linewidth=3)
axs[1, 0].plot(x, reg[10].predict(x), color="black", linewidth=3)
axs[1, 1].plot(x, reg[11].predict(x), color="black", linewidth=3)
axs[1, 2].plot(x, reg[12].predict(x), color="black", linewidth=3)

index_coe = 0
index_ylabel = 0
for m in range(n_rows):

for n in range(n_cols):
axs[m, n].set_title(titles[index_coe])
axs[m, n].set_xlabel("Time (Day)")
axs[m, n].set_ylabel(ylabels_[index_ylabel])
axs[m, n].grid("minor")
index_coe = index_coe + 1
index_ylabel = index_ylabel + 1

for tick in axs[m, n].get_xticklabels():
tick.set_rotation(45)

plt.subplots_adjust(wspace=(0.24))
plt.show()

return FIG

def coes_regres(data, time):
x = time * TU / (86400)
y = data.values.transpose()

x = x.reshape(len(x), 1)
y1 = y[1].reshape(len(y[1]), 1)
y2 = y[2].reshape(len(y[2]), 1)
y3 = y[3].reshape(len(y[3]), 1)
y4 = y[4].reshape(len(y[4]), 1)
y5 = y[5].reshape(len(y[5]), 1)
y6 = y[6].reshape(len(y[6]), 1)

regr1 = LinearRegression().fit(x, y1)
regr2 = LinearRegression().fit(x, y2)
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regr3 = LinearRegression().fit(x, y3)
regr4 = LinearRegression().fit(x, y4)
regr5 = LinearRegression().fit(x, y5)
regr6 = LinearRegression().fit(x, y6)

score1 = regr1.score(x, y1)
score2 = regr2.score(x, y2)
score3 = regr3.score(x, y3)
score4 = regr4.score(x, y4)
score5 = regr5.score(x, y5)
score6 = regr6.score(x, y6)

return (
x,
y1,
y2,
y3,
y4,
y5,
y6,
regr1,
regr2,
regr3,
regr4,
regr5,
regr6,
score1,
score2,
score3,
score4,
score5,
score6,

)

def coes_information(q, w, e, r, t, y, u, i, o):
regr_error = pd.DataFrame()
regr_error["Legend"] = [

"p_Error_Intercept",
"e_Error_Intercept",
"i_Error_Intercept",
"RAAN_Error_Intercept",
"AoP_Error_Intercept",
"nu_Error_Intercept",
"p_Error_Coef",
"e_Error_Coef",
"i_Error_Coef",
"RAAN_Error_Coef",
"AoP_Error_Coef",
"nu_Error_Coef",
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"p_Error_Score",
"e_Error_Score",
"i_Error_Score",
"RAAN_Error_Score",
"AoP_Error_Score",
"nu_Error_Score",

]

regr_error["A1_2B"] = [
q[7].intercept_[0],
q[8].intercept_[0],
q[9].intercept_[0],
q[10].intercept_[0],
q[11].intercept_[0],
q[12].intercept_[0],
q[7].coef_[0, 0],
q[8].coef_[0, 0],
q[9].coef_[0, 0],
q[10].coef_[0, 0],
q[11].coef_[0, 0],
q[12].coef_[0, 0],
q[13],
q[14],
q[15],
q[16],
q[17],
q[18],

]
regr_error["A2_2B"] = [

w[7].intercept_[0],
w[8].intercept_[0],
w[9].intercept_[0],
w[10].intercept_[0],
w[11].intercept_[0],
w[12].intercept_[0],
w[7].coef_[0, 0],
w[8].coef_[0, 0],
w[9].coef_[0, 0],
w[10].coef_[0, 0],
w[11].coef_[0, 0],
w[12].coef_[0, 0],
w[13],
w[14],
w[15],
w[16],
w[17],
w[18],

]
regr_error["A3_2B"] = [

e[7].intercept_[0],
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e[8].intercept_[0],
e[9].intercept_[0],
e[10].intercept_[0],
e[11].intercept_[0],
e[12].intercept_[0],
e[7].coef_[0, 0],
e[8].coef_[0, 0],
e[9].coef_[0, 0],
e[10].coef_[0, 0],
e[11].coef_[0, 0],
e[12].coef_[0, 0],
e[13],
e[14],
e[15],
e[16],
e[17],
e[18],

]
regr_error["A1_J2"] = [

r[7].intercept_[0],
r[8].intercept_[0],
r[9].intercept_[0],
r[10].intercept_[0],
r[11].intercept_[0],
r[12].intercept_[0],
r[7].coef_[0, 0],
r[8].coef_[0, 0],
r[9].coef_[0, 0],
r[10].coef_[0, 0],
r[11].coef_[0, 0],
r[12].coef_[0, 0],
r[13],
r[14],
r[15],
r[16],
r[17],
r[18],

]
regr_error["A2_J2"] = [

t[7].intercept_[0],
t[8].intercept_[0],
t[9].intercept_[0],
t[10].intercept_[0],
t[11].intercept_[0],
t[12].intercept_[0],
t[7].coef_[0, 0],
t[8].coef_[0, 0],
t[9].coef_[0, 0],
t[10].coef_[0, 0],
t[11].coef_[0, 0],
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t[12].coef_[0, 0],
t[13],
t[14],
t[15],
t[16],
t[17],
t[18],

]
regr_error["A3_J2"] = [

y[7].intercept_[0],
y[8].intercept_[0],
y[9].intercept_[0],
y[10].intercept_[0],
y[11].intercept_[0],
y[12].intercept_[0],
y[7].coef_[0, 0],
y[8].coef_[0, 0],
y[9].coef_[0, 0],
y[10].coef_[0, 0],
y[11].coef_[0, 0],
y[12].coef_[0, 0],
y[13],
y[14],
y[15],
y[16],
y[17],
y[18],

]
regr_error["A1_SG"] = [

u[7].intercept_[0],
u[8].intercept_[0],
u[9].intercept_[0],
u[10].intercept_[0],
u[11].intercept_[0],
u[12].intercept_[0],
u[7].coef_[0, 0],
u[8].coef_[0, 0],
u[9].coef_[0, 0],
u[10].coef_[0, 0],
u[11].coef_[0, 0],
u[12].coef_[0, 0],
u[13],
u[14],
u[15],
u[16],
u[17],
u[18],

]
regr_error["A2_SG"] = [

i[7].intercept_[0],
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i[8].intercept_[0],
i[9].intercept_[0],
i[10].intercept_[0],
i[11].intercept_[0],
i[12].intercept_[0],
i[7].coef_[0, 0],
i[8].coef_[0, 0],
i[9].coef_[0, 0],
i[10].coef_[0, 0],
i[11].coef_[0, 0],
i[12].coef_[0, 0],
i[13],
i[14],
i[15],
i[16],
i[17],
i[18],

]
regr_error["A3_SG"] = [

o[7].intercept_[0],
o[8].intercept_[0],
o[9].intercept_[0],
o[10].intercept_[0],
o[11].intercept_[0],
o[12].intercept_[0],
o[7].coef_[0, 0],
o[8].coef_[0, 0],
o[9].coef_[0, 0],
o[10].coef_[0, 0],
o[11].coef_[0, 0],
o[12].coef_[0, 0],
o[13],
o[14],
o[15],
o[16],
o[17],
o[18],

]

regr_error[
[

"A1_2B",
"A2_2B",
"A3_2B",
"A1_J2",
"A2_J2",
"A3_J2",
"A1_SG",
"A2_SG",
"A3_SG",
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]
] = (

regr_error[
[

"A1_2B",
"A2_2B",
"A3_2B",
"A1_J2",
"A2_J2",
"A3_J2",
"A1_SG",
"A2_SG",
"A3_SG",

]
]
.astype(float)
.round(4)

)

return regr_error

def rvs_regres(data, time):
x = time * TU / (86400)
y = data.values.transpose()

x = x.reshape(len(x), 1)
y1 = y[7].reshape(len(y[7]), 1)
y2 = y[8].reshape(len(y[8]), 1)
y3 = y[9].reshape(len(y[9]), 1)
y4 = y[10].reshape(len(y[10]), 1)
y5 = y[11].reshape(len(y[11]), 1)
y6 = y[12].reshape(len(y[12]), 1)

regr1 = LinearRegression().fit(x, y1)
regr2 = LinearRegression().fit(x, y2)
regr3 = LinearRegression().fit(x, y3)
regr4 = LinearRegression().fit(x, y4)
regr5 = LinearRegression().fit(x, y5)
regr6 = LinearRegression().fit(x, y6)

score1 = regr1.score(x, y1)
score2 = regr2.score(x, y2)
score3 = regr3.score(x, y3)
score4 = regr4.score(x, y4)
score5 = regr5.score(x, y5)
score6 = regr6.score(x, y6)

return (
x,
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y1,
y2,
y3,
y4,
y5,
y6,
regr1,
regr2,
regr3,
regr4,
regr5,
regr6,
score1,
score2,
score3,
score4,
score5,
score6,

)

def rvs_information(q, w, e, r, t, y, u, i, o):
regr_error = pd.DataFrame()
regr_error["Legend"] = [

"rx_Error_Inter",
"ry_Error_Inter",
"rz_Error_Inter",
"vx_Error_Inter",
"vy_Error_Inter",
"vz_Error_Inter",
"rx_Error_Coeff",
"ry_Error_Coeff",
"rz_Error_Coeff",
"vx_Error_Coeff",
"vy_Error_Coeff",
"vz_Error_Coeff",
"rx_Error_Score",
"ry_Error_Score",
"rz_Error_Score",
"vx_Error_Score",
"vy_Error_Score",
"vz_Error_Score",

]

regr_error["A1_2B"] = [
q[7].intercept_[0],
q[8].intercept_[0],
q[9].intercept_[0],
q[10].intercept_[0],
q[11].intercept_[0],
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q[12].intercept_[0],
q[7].coef_[0, 0],
q[8].coef_[0, 0],
q[9].coef_[0, 0],
q[10].coef_[0, 0],
q[11].coef_[0, 0],
q[12].coef_[0, 0],
q[13],
q[14],
q[15],
q[16],
q[17],
q[18],

]
regr_error["A2_2B"] = [

w[7].intercept_[0],
w[8].intercept_[0],
w[9].intercept_[0],
w[10].intercept_[0],
w[11].intercept_[0],
w[12].intercept_[0],
w[7].coef_[0, 0],
w[8].coef_[0, 0],
w[9].coef_[0, 0],
w[10].coef_[0, 0],
w[11].coef_[0, 0],
w[12].coef_[0, 0],
w[13],
w[14],
w[15],
w[16],
w[17],
w[18],

]
regr_error["A3_2B"] = [

e[7].intercept_[0],
e[8].intercept_[0],
e[9].intercept_[0],
e[10].intercept_[0],
e[11].intercept_[0],
e[12].intercept_[0],
e[7].coef_[0, 0],
e[8].coef_[0, 0],
e[9].coef_[0, 0],
e[10].coef_[0, 0],
e[11].coef_[0, 0],
e[12].coef_[0, 0],
e[13],
e[14],
e[15],
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e[16],
e[17],
e[18],

]
regr_error["A1_J2"] = [

r[7].intercept_[0],
r[8].intercept_[0],
r[9].intercept_[0],
r[10].intercept_[0],
r[11].intercept_[0],
r[12].intercept_[0],
r[7].coef_[0, 0],
r[8].coef_[0, 0],
r[9].coef_[0, 0],
r[10].coef_[0, 0],
r[11].coef_[0, 0],
r[12].coef_[0, 0],
r[13],
r[14],
r[15],
r[16],
r[17],
r[18],

]
regr_error["A2_J2"] = [

t[7].intercept_[0],
t[8].intercept_[0],
t[9].intercept_[0],
t[10].intercept_[0],
t[11].intercept_[0],
t[12].intercept_[0],
t[7].coef_[0, 0],
t[8].coef_[0, 0],
t[9].coef_[0, 0],
t[10].coef_[0, 0],
t[11].coef_[0, 0],
r[12].coef_[0, 0],
t[13],
t[14],
t[15],
t[16],
t[17],
t[18],

]
regr_error["A3_J2"] = [

y[7].intercept_[0],
y[8].intercept_[0],
y[9].intercept_[0],
y[10].intercept_[0],
y[11].intercept_[0],
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y[12].intercept_[0],
y[7].coef_[0, 0],
y[8].coef_[0, 0],
y[9].coef_[0, 0],
y[10].coef_[0, 0],
y[11].coef_[0, 0],
r[12].coef_[0, 0],
y[13],
y[14],
y[15],
y[16],
y[17],
y[18],

]
regr_error["A1_SG"] = [

u[7].intercept_[0],
u[8].intercept_[0],
u[9].intercept_[0],
u[10].intercept_[0],
u[11].intercept_[0],
u[12].intercept_[0],
u[7].coef_[0, 0],
u[8].coef_[0, 0],
u[9].coef_[0, 0],
u[10].coef_[0, 0],
u[11].coef_[0, 0],
u[12].coef_[0, 0],
u[13],
u[14],
u[15],
u[16],
u[17],
u[18],

]
regr_error["A2_SG"] = [

i[7].intercept_[0],
i[8].intercept_[0],
i[9].intercept_[0],
i[10].intercept_[0],
i[11].intercept_[0],
i[12].intercept_[0],
i[7].coef_[0, 0],
i[8].coef_[0, 0],
i[9].coef_[0, 0],
i[10].coef_[0, 0],
i[11].coef_[0, 0],
i[12].coef_[0, 0],
i[13],
i[14],
i[15],

171/209



NUMERICAL ANALYSIS OF ORBIT PREDICTION ERRORS OF LAPAN’S SATELLITES

i[16],
i[17],
i[18],

]
regr_error["A3_SG"] = [

o[7].intercept_[0],
o[8].intercept_[0],
o[9].intercept_[0],
o[10].intercept_[0],
o[11].intercept_[0],
o[12].intercept_[0],
o[7].coef_[0, 0],
o[8].coef_[0, 0],
o[9].coef_[0, 0],
o[10].coef_[0, 0],
o[11].coef_[0, 0],
o[12].coef_[0, 0],
o[13],
o[14],
o[15],
o[16],
o[17],
o[18],

]

regr_error[
[

"A1_2B",
"A2_2B",
"A3_2B",
"A1_J2",
"A2_J2",
"A3_J2",
"A1_SG",
"A2_SG",
"A3_SG",

]
] = (

regr_error[
[

"A1_2B",
"A2_2B",
"A3_2B",
"A1_J2",
"A2_J2",
"A3_J2",
"A1_SG",
"A2_SG",
"A3_SG",

]

172/209



NUMERICAL ANALYSIS OF ORBIT PREDICTION ERRORS OF LAPAN’S SATELLITES

]
.astype(float)
.round(4)

)

return regr_error

import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
from Constants import TU, ER, VU
from pandas.plotting import register_matplotlib_converters

register_matplotlib_converters()

def plot_inplane(sol):
"""
Description
-----------
This function is used to plot the propagated positions of the satellite in the [X,Y] plane.

Parameters
----------
sol : it is the solver of the twobody gradient, the X and Y coordinates are needed.

Returns
-------
None.
"""
y_states = sol

xs = y_states[0, :] * ER
ys = y_states[1, :] * ER

fig, ax = plt.subplots(figsize=(9, 9))
ax.plot(xs, ys, ".")
ax.set(xlabel="x (KM)", ylabel="y (KM)", aspect="equal")
plt.grid("major")

plt.show()

return fig

def plot_outplane(sol):
"""
Description
-----------
This function is used to plot the propagated positions of the satellite in the [Y,Z] plane.
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Parameters
----------
sol : it is the solver of the twobody gradient, the Y and Z coordinates are needed.

Returns
-------
None.
"""
y_states = sol

ys = y_states[1, :] * ER
zs = y_states[2, :] * ER

fig, ax = plt.subplots(figsize=(9, 9))
ax.plot(ys, zs, ".")
ax.set(xlabel="y (KM)", ylabel="z (KM)", aspect="equal")
plt.grid("major")

plt.show()

return fig

def plot_3d(sol):
"""
Description
-----------
This function is used to plot the propagated positions of the satellite in a 3D space.

Parameters
----------
sol : it is the solver of the twobody gradient, the X, Y, and Z coordinates are needed.

Returns
-------
None.
"""
y_states = sol

xs = y_states[0, :] * ER
ys = y_states[1, :] * ER
zs = y_states[2, :] * ER

fig = plt.figure(figsize=(10, 6))
ax = Axes3D(fig)

ax.plot(xs, ys, zs, ".")
ax.set(xlabel="x (KM)", ylabel="y (KM)", zlabel="z (KM)")
plt.show()
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plt.show()

return fig

def plot_coes(coes_array):
"""
Plot COEs from array parsed from TLE

Keyword Arguments:
coes_array -- List of COEs from TLE
"""
ts = coes_array[:, 0]

ylabels_ = [
"Semiparameter (km)",
"Eccentricity (deg)",
"Inclination (deg)",
"RAAN (deg)",
"AoP (deg)",
"True Anomaly (deg)",

]
titles = [

"Semiparameter",
"Eccentricity",
"Inclination",
"Right Ascension of the Ascending Node",
"Argument of Perigee",
"True Anomaly",

]

n_rows = 2
n_cols = 3
FIG, axs = plt.subplots(n_rows, n_cols, sharex=True, figsize=(18, 10))

axs[0, 0].plot(ts, coes_array[:, 1] * ER, ".", color="b")
axs[0, 1].plot(ts, coes_array[:, 2], ".", color="g")
axs[0, 2].plot(ts, coes_array[:, 3], ".", color="r")
axs[1, 0].plot(ts, coes_array[:, 4], ".", color="c")
axs[1, 1].plot(ts, coes_array[:, 5], ".", color="m")
axs[1, 2].plot(ts, coes_array[:, 6], ".", color="y")

index_coe = 0
index_ylabel = 0
for m in range(n_rows):

for n in range(n_cols):
axs[m, n].set_title(titles[index_coe])
axs[m, n].set_xlabel("Time (Day)")
axs[m, n].set_ylabel(ylabels_[index_ylabel])
# axs[m, n].set_ylim(ylims[index_coe])
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axs[m, n].grid("minor")
index_coe = index_coe + 1
index_ylabel = index_ylabel + 1

for tick in axs[m, n].get_xticklabels():
tick.set_rotation(45)

plt.subplots_adjust(wspace=(0.3))
plt.show()

return FIG

def Coes_plot_2D(coes_array, solver):
"""
Description
-----------
This function is intended for plotting all of the propagated COEs.
All of which are separated according to its own elements though time.

Parameters
----------
coes_array : it is the COEs that was cnverted from the propagated state vectors.
solver : it is the solver of the twobody gradient, the only thing that is used in this function is the solver.t (time).

Returns
-------
None.
"""
ts = solver

ylabels_ = [
"Semiparameter (km)",
"Eccentricity (deg)",
"Inclination (deg)",
"RAAN (deg)",
"AoP (deg)",
"True Anomaly (deg)",

]
titles = [

"Semiparameter",
"Eccentricity",
"Inclination",
"Right Ascension of the Ascending Node",
"Argument of Perigee",
"True Anomaly",

]

mins_maxs = []
for row in coes_array:
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min = row.min()
max = row.max()
min_max = (min, max)
mins_maxs.append(min_max)

# Setting ylim values for the matplotlib
p_ylim = (0, (mins_maxs[0][1] + 2) * ER)
ecc_ylim = (0, mins_maxs[1][1] + 0.1)
inc_ylim = tuple(np.add(mins_maxs[2], (-20, 20)))
Omeg_ylim = tuple(np.add(mins_maxs[3], (-20, 20)))
omeg_ylim = tuple(np.add(mins_maxs[4], (-20, 20)))
nu_ylim = (-5, 365)

ylims = [p_ylim, ecc_ylim, inc_ylim, Omeg_ylim, omeg_ylim, nu_ylim]

n_rows = 2
n_cols = 3
FIG, axs = plt.subplots(n_rows, n_cols, sharex=True, figsize=(18, 10))

axs[0, 0].plot((ts * TU / 86400), coes_array[0, :] * ER, ".", color="b")
axs[0, 1].plot((ts * TU / 86400), coes_array[1, :], ".", color="g")
axs[0, 2].plot((ts * TU / 86400), coes_array[2, :], ".", color="r")
axs[1, 0].plot((ts * TU / 86400), coes_array[3, :], ".", color="c")
axs[1, 1].plot((ts * TU / 86400), coes_array[4, :], ".", color="m")
axs[1, 2].plot((ts * TU / 86400), coes_array[5, :], ".", color="y")

index_coe = 0
index_ylabel = 0
for m in range(n_rows):

for n in range(n_cols):
axs[m, n].set_title(titles[index_coe])
axs[m, n].set_xlabel("Time (Day)")
axs[m, n].set_ylabel(ylabels_[index_ylabel])
axs[m, n].set_ylim(ylims[index_coe])
axs[m, n].grid("minor")
index_coe = index_coe + 1
index_ylabel = index_ylabel + 1

for tick in axs[m, n].get_xticklabels():
tick.set_rotation(45)

plt.subplots_adjust(wspace=(0.3))
plt.show()

return FIG

def plot_rvs(coes_array, rvs):
ts = coes_array[:, 0]
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ylabels_ = ["rx (km)", "ry (km)", "rz (km)", "vx (km/s)", "vy (km/s)", "vz (km/s)"]
titles = [

"X position",
"Y position",
"Z position",
"X velocity",
"Y velocity",
"Z velocity",

]

n_rows = 2
n_cols = 3
FIG, axs = plt.subplots(n_rows, n_cols, sharex=True, figsize=(18, 10))

axs[0, 0].plot(ts, rvs[:, 0] * ER / 1000, ".", color="b")
axs[0, 1].plot(ts, rvs[:, 1] * ER / 1000, ".", color="g")
axs[0, 2].plot(ts, rvs[:, 2] * ER / 1000, ".", color="r")
axs[1, 0].plot(ts, rvs[:, 3] * VU, ".", color="c")
axs[1, 1].plot(ts, rvs[:, 4] * VU, ".", color="m")
axs[1, 2].plot(ts, rvs[:, 5] * VU, ".", color="y")

index_rv = 0
index_ylabel = 0
for m in range(n_rows):

for n in range(n_cols):
axs[m, n].set_title(titles[index_rv])
axs[m, n].set_xlabel("Time (Day)")
axs[m, n].set_ylabel(ylabels_[index_ylabel])
axs[m, n].grid("minor")
index_coe = index_rv + 1
index_ylabel = index_ylabel + 1

for tick in axs[m, n].get_xticklabels():
tick.set_rotation(45)

plt.subplots_adjust(wspace=(0.3))
plt.show()

return FIG

import pandas as pd
import numpy as np
from numpy import savetx
from scipy.integrate import solve_ivp
from OrbitalElements import *
from TLE_Extractor import *
from Constants import *
from Plot_Func import *
from DataFrame import *

"""defining the LAPAN satellites ephemerides"""
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LAPAN_A1_txt = "from launch/A1.txt"
LAPAN_A2_txt = "from launch/A2.txt"
LAPAN_A3_txt = "from launch/A3.txt"

A1DF = pd.read_table(LAPAN_A1_txt, header=None).values
A2DF = pd.read_table(LAPAN_A2_txt, header=None).values
A3DF = pd.read_table(LAPAN_A3_txt, header=None).values

"""extracting the COEs from the defined ephemerides"""
A1_ephemerides = tle_ephemerides(LAPAN_A1_txt)
A2_ephemerides = tle_ephemerides(LAPAN_A2_txt)
A3_ephemerides = tle_ephemerides(LAPAN_A3_txt)

"""Converting the ephemerides into state vectors"""
A1_RVs = coes2rvs(A1_ephemerides)
A2_RVs = coes2rvs(A2_ephemerides)
A3_RVs = coes2rvs(A3_ephemerides)

"""Taking the first state vector of each ephemerides"""
coe_rv_a1 = coe2rv(A1_ephemerides[0][1:])
coe_rv_a2 = coe2rv(A2_ephemerides[0][1:])
coe_rv_a3 = coe2rv(A3_ephemerides[0][1:])

"""Propagating LAPAN-A1/A2/A3 using solve_ivp then converting the RVs into COEs"""
# LAPAN-A1
solver1 = prop2body(A1_ephemerides[:, 0], coe_rv_a1)
prop_coes_A1 = rvs2coes(solver1.y.transpose())

# LAPAN-A2
solver2 = prop2body(A2_ephemerides[:, 0], coe_rv_a2)
prop_coes_A2 = rvs2coes(solver2.y.transpose())

# LAPAN-A3
solver3 = prop2body(A3_ephemerides[:, 0], coe_rv_a3)
prop_coes_A3 = rvs2coes(solver3.y.transpose())

"""Propagating LAPAN-A1/A2/A3 using solve_ivp then converting the RVs into COEs"""
# LAPAN-A1
solver1_J2 = propj2(A1_ephemerides[:, 0], coe_rv_a1)
prop_coes_A1_J2 = rvs2coes(solver1_J2.y.transpose())

# LAPAN-A2
solver2_J2 = propj2(A2_ephemerides[:, 0], coe_rv_a2)
prop_coes_A2_J2 = rvs2coes(solver2_J2.y.transpose())

# LAPAN-A3
solver3_J2 = propj2(A3_ephemerides[:, 0], coe_rv_a3)
prop_coes_A3_J2 = rvs2coes(solver3_J2.y.transpose())

#################################################################################
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#######################Below here are for convenience#################################
#################################################################################

"""saving the propagation results for convenience"""
np.savetxt("A1_prop_t.csv", solver1.t, delimiter=",")
np.savetxt("A2_prop_t.csv", solver2.t, delimiter=",")
np.savetxt("A3_prop_t.csv", solver3.t, delimiter=",")

np.savetxt("A1_2B_RVs.csv", solver1.y, delimiter=",")
np.savetxt("A2_2B_RVs.csv", solver2.y, delimiter=",")
np.savetxt("A3_2B_RVs.csv", solver3.y, delimiter=",")
np.savetxt("A1_2B_Coes.csv", prop_coes_A1, delimiter=",")
np.savetxt("A2_2B_Coes.csv", prop_coes_A2, delimiter=",")
np.savetxt("A3_2B_Coes.csv", prop_coes_A3, delimiter=",")

np.savetxt("A1_J2_RVs.csv", solver1_J2.y, delimiter=",")
np.savetxt("A2_J2_RVs.csv", solver2_J2.y, delimiter=",")
np.savetxt("A3_J2_RVs.csv", solver3_J2.y, delimiter=",")
np.savetxt("A1_J2_Coes.csv", prop_coes_A1_J2, delimiter=",")
np.savetxt("A2_J2_Coes.csv", prop_coes_A2_J2, delimiter=",")
np.savetxt("A3_J2_Coes.csv", prop_coes_A3_J2, delimiter=",")

"""Aftermath for calling the propagated results"""
A1_t = np.genfromtxt("BuildingBlock/A1/A1_prop_t.csv", delimiter=",")
A2_t = np.genfromtxt("BuildingBlock/A2/A2_prop_t.csv", delimiter=",")
A3_t = np.genfromtxt("BuildingBlock/A3/A3_prop_t.csv", delimiter=",")

A1_2BRVs = np.genfromtxt("BuildingBlock/A1/A1_2B_RVs.csv", delimiter=",")
A2_2BRVs = np.genfromtxt("BuildingBlock/A2/A2_2B_RVs.csv", delimiter=",")
A3_2BRVs = np.genfromtxt("BuildingBlock/A3/A3_2B_RVs.csv", delimiter=",")
A1_2BCOEs = np.genfromtxt("BuildingBlock/A1/A1_2B_Coes.csv", delimiter=",")
A2_2BCOEs = np.genfromtxt("BuildingBlock/A2/A2_2B_Coes.csv", delimiter=",")
A3_2BCOEs = np.genfromtxt("BuildingBlock/A3/A3_2B_Coes.csv", delimiter=",")

A1_J2RVs = np.genfromtxt("BuildingBlock/A1/A1_J2_RVs.csv", delimiter=",")
A2_J2RVs = np.genfromtxt("BuildingBlock/A2/A2_J2_RVs.csv", delimiter=",")
A3_J2RVs = np.genfromtxt("BuildingBlock/A3/A3_J2_RVs.csv", delimiter=",")
A1_J2COEs = np.genfromtxt("BuildingBlock/A1/A1_J2_Coes.csv", delimiter=",")
A2_J2COEs = np.genfromtxt("BuildingBlock/A2/A2_J2_Coes.csv", delimiter=",")
A3_J2COEs = np.genfromtxt("BuildingBlock/A3/A3_J2_Coes.csv", delimiter=",")

from Main_File import *

# """TLE"""
# A1_inplane = plot_inplane(A1_RVs.transpose())
# A1_outplane = plot_outplane(A1_RVs.transpose())
# A1_3D = plot_3d(A1_RVs.transpose())
# TLE_plot_A1 = plot_coes(A1_ephemerides)

# A2_inplane = plot_inplane(A2_RVs.transpose())
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# A2_outplane = plot_outplane(A2_RVs.transpose())
# A2_3D = plot_3d(A2_RVs.transpose())
# TLE_plot_A2 = plot_coes(A2_ephemerides)

# A3_inplane = plot_inplane(A3_RVs.transpose())
# A3_outplane = plot_outplane(A3_RVs.transpose())
# A3_3D = plot_3d(A3_RVs.transpose())
# TLE_plot_A3 = plot_coes(A3_ephemerides)

# A1_RVS_plot = plot_rvs(A1_ephemerides, A1_RVs)
# A2_RVS_plot = plot_rvs(A2_ephemerides, A2_RVs)
# A3_RVS_plot = plot_rvs(A3_ephemerides, A3_RVs)

# TLE_plot_A1.savefig("LAPAN-A1 COEs from TLE datasets.png", dpi=600)
# TLE_plot_A2.savefig("LAPAN-A2 COEs from TLE datasets.png", dpi=600)
# TLE_plot_A3.savefig("LAPAN-A3 COEs from TLE datasets.png", dpi=600)

# A1_inplane.savefig("LAPAN-A1_X&Y-Plane_Position.png", dpi=600)
# A1_outplane.savefig("LAPAN-A1_Y&Z-Plane_Position.png", dpi=600)
# A1_3D.savefig("LAPAN-A1_3D_Position.png", dpi=600)

# A2_inplane.savefig("LAPAN-A2_X&Y-Plane_Position.png", dpi=600)
# A2_outplane.savefig("LAPAN-A2_Y&Z-Plane_Position.png", dpi=600)
# A2_3D.savefig("LAPAN-A2_3D_Position.png", dpi=600)

# A3_inplane.savefig("LAPAN-A3_X&Y-Plane_Position.png", dpi=600)
# A3_outplane.savefig("LAPAN-A3_Y&Z-Plane_Position.png", dpi=600)
# A3_3D.savefig("LAPAN-A3_3D_Position.png", dpi=600)

# A1_RVS_plot.savefig("LAPAN-A1_State_Vector.png", dpi = 600)
# A2_RVS_plot.savefig("LAPAN-A2_State_Vector.png", dpi = 600)
# A3_RVS_plot.savefig("LAPAN-A3_State_Vector.png", dpi = 600)

# """2Body"""
# # LAPAN-A1
# inplane_A1 = plot_inplane(A1_2BRVs)
# outplane_A1 = plot_outplane(A1_2BRVs)
# plot3D_A1 = plot_3d(A1_2BRVs)
# coesplot_A1 = Coes_plot_2D(A1_2BCOEs, A1_t)

# # LAPAN-A2
# inplane_A2 = plot_inplane(A2_2BRVs)
# outplane_A2 = plot_outplane(A2_2BRVs)
# plot3D_A2 = plot_3d(A2_2BRVs)
# coesplot_A2 = Coes_plot_2D(A2_2BCOEs, A2_t)

# # LAPAN-A3
# inplane_A3 = plot_inplane(A3_2BRVs)
# outplane_A3 = plot_outplane(A3_2BRVs)
# plot3D_A3 = plot_3d(A3_2BRVs)
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# coesplot_A3 = Coes_plot_2D(A3_2BCOEs, A3_t)

# # LAPAN-A1
# inplane_A1.savefig("LAPAN-A1_X&Y-Plane_Position-Two-Body.png", dpi = 600)
# outplane_A1.savefig("LAPAN-A1_Y&Z-Plane_Position-Two-Body.png", dpi = 600)
# plot3D_A1.savefig("LAPAN-A1_3D_Position-Two-Body.png", dpi = 600)
# coesplot_A1.savefig("LAPAN-A1_1Day_Propagated-COEs-Two-Body.png", dpi = 600)

# # LAPAN-A2
# inplane_A2.savefig("LAPAN-A2_X&Y-Plane_Position-Two-Body.png", dpi = 600)
# outplane_A2.savefig("LAPAN-A2_Y&Z-Plane_Position-Two-Body.png", dpi = 600)
# plot3D_A2.savefig("LAPAN-A2_3D_Position-Two-Body.png", dpi = 600)
# coesplot_A2.savefig("LAPAN-A2_1Day_Propagated-COEs-Two-Body.png", dpi = 600)

# # LAPAN-A3
# inplane_A3.savefig("LAPAN-A3_X&Y-Plane_Position-Two-Body.png", dpi = 600)
# outplane_A3.savefig("LAPAN-A3_Y&Z-Plane_Position-Two-Body.png", dpi = 600)
# plot3D_A3.savefig("LAPAN-A3_3D_Position-Two-Body.png", dpi = 600)
# coesplot_A3.savefig("LAPAN-A3_1Day_Propagated-COEs-Two-Body.png", dpi = 600)

# """2Body+J2"""
# # LAPAN-A1
# inplane_A1_J2 = plot_inplane(A1_J2RVs)
# outplane_A1_J2 = plot_outplane(A1_J2RVs)
# plot3D_A1_J2 = plot_3d(A1_J2RVs)
# coesplot_A1_J2 = Coes_plot_2D(A1_J2COEs, A1_t)

# # LAPAN-A2
# inplane_A2_J2 = plot_inplane(A2_J2RVs)
# outplane_A2_J2 = plot_outplane(A2_J2RVs)
# plot3D_A2_J2 = plot_3d(A2_J2RVs)
# coesplot_A2_J2 = Coes_plot_2D(A2_J2COEs, A2_t)

# # LAPAN-A3
# inplane_A3_J2 = plot_inplane(A3_J2RVs)
# outplane_A3_J2 = plot_outplane(A3_J2RVs)
# plot3D_A3_J2 = plot_3d(A3_J2RVs)
# coesplot_A3_J2 = Coes_plot_2D(A3_J2COEs, A3_t)

# # LAPAN-A1
# inplane_A1_J2.savefig("LAPAN-A1_X&Y-Plane_Position-J2.png", dpi = 600)
# outplane_A1_J2.savefig("LAPAN-A1_Y&Z-Plane_Position-J2.png", dpi = 600)
# plot3D_A1_J2.savefig("LAPAN-A1_3D_Position-J2.png", dpi = 600)
# coesplot_A1_J2.savefig("LAPAN-A1_Propagated-COEs-J2.png", dpi = 600)

# # LAPAN-A2
# inplane_A2_J2.savefig("LAPAN-A2_X&Y-Plane_Position-J2.png", dpi = 600)
# outplane_A2_J2.savefig("LAPAN-A2_Y&Z-Plane_Position-J2.png", dpi = 600)
# plot3D_A2_J2.savefig("LAPAN-A2_3D_Position-J2.png", dpi = 600)
# coesplot_A2_J2.savefig("LAPAN-A2_Propagated-COEs-J2.png", dpi = 600)
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# # LAPAN-A3
# inplane_A3_J2.savefig("LAPAN-A3_X&Y-Plane_Position-J2.png", dpi = 600)
# outplane_A3_J2.savefig("LAPAN-A3_Y&Z-Plane_Position-J2.png", dpi = 600)
# plot3D_A3_J2.savefig("LAPAN-A3_3D_Position-J2.png", dpi = 600)
# coesplot_A3_J2.savefig("LAPAN-A3_Propagated-COEs-J2.png", dpi = 600)

from DataFrame import *
from Main_File import *

"""TWO-BODY"""
A1_2Body_RVS_DF = PROP_RVS(A1_ephemerides, A1_RVs, A1_2BRVs)
A1_2Body_COES_DF = PROP_COES(A1_ephemerides, A1_2BCOEs)

A2_2Body_RVS_DF = PROP_RVS(A2_ephemerides, A2_RVs, A2_2BRVs)
A2_2Body_COES_DF = PROP_COES(A2_ephemerides, A2_2BCOEs)

A3_2Body_RVS_DF = PROP_RVS(A3_ephemerides, A3_RVs, A3_2BRVs)
A3_2Body_COES_DF = PROP_COES(A3_ephemerides, A3_2BCOEs)

"""Error Two-Body"""
A1_2Body_RVS_ERROR = ERROR_RVS(A1_ephemerides, A1_RVs, A1_2BRVs)
A1_2Body_COES_ERROR = ERROR_COES(A1_ephemerides, A1_2BCOEs)

A2_2Body_RVS_ERROR = ERROR_RVS(A2_ephemerides, A2_RVs, A2_2BRVs)
A2_2Body_COES_ERROR = ERROR_COES(A2_ephemerides, A2_2BCOEs)

A3_2Body_RVS_ERROR = ERROR_RVS(A3_ephemerides, A3_RVs, A3_2BRVs)
A3_2Body_COES_ERROR = ERROR_COES(A3_ephemerides, A3_2BCOEs)

"""All In One Two-Body"""
A1_2Body = ALL_IN1(A1_2Body_COES_DF, A1_2Body_RVS_DF)
A2_2Body = ALL_IN1(A2_2Body_COES_DF, A2_2Body_RVS_DF)
A3_2Body = ALL_IN1(A3_2Body_COES_DF, A3_2Body_RVS_DF)

A1_2Body_Error = ALL_IN1(A1_2Body_COES_ERROR, A1_2Body_RVS_ERROR)
A2_2Body_Error = ALL_IN1(A2_2Body_COES_ERROR, A2_2Body_RVS_ERROR)
A3_2Body_Error = ALL_IN1(A3_2Body_COES_ERROR, A3_2Body_RVS_ERROR)

################################################################################

"""TWO-BODY + J2"""
A1_J2_RVS_DF = PROP_RVS(A1_ephemerides, A1_RVs, A1_J2RVs)
A1_J2_COES_DF = PROP_COES(A1_ephemerides, A1_J2COEs)

A2_J2_RVS_DF = PROP_RVS(A2_ephemerides, A2_RVs, A2_J2RVs)
A2_J2_COES_DF = PROP_COES(A2_ephemerides, A2_J2COEs)

A3_J2_RVS_DF = PROP_RVS(A3_ephemerides, A3_RVs, A3_J2RVs)
A3_J2_COES_DF = PROP_COES(A3_ephemerides, A3_J2COEs)
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"""Error Two-Body + J2"""
A1_J2_RVS_ERROR = ERROR_RVS(A1_ephemerides, A1_RVs, A1_J2RVs)
A1_J2_COES_ERROR = ERROR_COES(A1_ephemerides, A1_J2COEs)

A2_J2_RVS_ERROR = ERROR_RVS(A2_ephemerides, A2_RVs, A2_J2RVs)
A2_J2_COES_ERROR = ERROR_COES(A2_ephemerides, A2_J2COEs)

A3_J2_RVS_ERROR = ERROR_RVS(A3_ephemerides, A3_RVs, A3_J2RVs)
A3_J2_COES_ERROR = ERROR_COES(A3_ephemerides, A3_J2COEs)

"""All In One Two-Body + J2"""
A1_J2 = ALL_IN1(A1_J2_COES_DF, A1_J2_RVS_DF)
A2_J2 = ALL_IN1(A2_J2_COES_DF, A2_J2_RVS_DF)
A3_J2 = ALL_IN1(A3_J2_COES_DF, A3_J2_RVS_DF)

A1_J2_Error = ALL_IN1(A1_J2_COES_ERROR, A1_J2_RVS_ERROR)
A2_J2_Error = ALL_IN1(A2_J2_COES_ERROR, A2_J2_RVS_ERROR)
A3_J2_Error = ALL_IN1(A3_J2_COES_ERROR, A3_J2_RVS_ERROR)

################################################################################

"""Saving to .csv"""
A1_2Body_Error.to_csv("A1_TwoBody_Error_All.csv", index=False, header=True)
A2_2Body_Error.to_csv("A2_TwoBody_Error_All.csv", index=False, header=True)
A3_2Body_Error.to_csv("A3_TwoBody_Error_All.csv", index=False, header=True)

A1_J2_Error.to_csv("A1_TwoBody_J2_Error_All.csv", index=False, header=True)
A2_J2_Error.to_csv("A2_TwoBody_J2_Error_All.csv", index=False, header=True)
A3_J2_Error.to_csv("A3_TwoBody_J2_Error_All.csv", index=False, header=True)

import datetime
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from astropy.time import Time
from cysgp4 import *
from Constants import *
from Main_File import *
from OrbitalElements import *

def readtle(txtstr):
dr = open(txtstr, "r").read()
lines = dr.split('\n')
list_txt = np.array(list(zip(*tuple(lines[idx::3] for idx in range(3)))))

listed = []
for i in range(len(list_txt)):

listed.append(PyTle(*list_txt[i]))

return listed
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def epochs(listed):
epoch = np.array([])
for i in range(len(listed)):

epoch = np.append(epoch, listed[i].epoch.mjd)

return epoch

def sgp4_prop(time, satellite):
results = []
for i in range(len(satellite)):

propagated = propagate_many(time[i], satellite[0], do_geo=False, do_topo=False)
results.append(propagated)

pos = np.array([])
vel = np.array([])

for j in range(len(results)):
pos = np.append(pos, results[j]["eci_pos"])
vel = np.append(vel, results[j]["eci_vel"])

pos = pos.reshape(int(len(pos)/3),3) / ER
vel = vel.reshape(int(len(vel)/3),3) / VU

states = np.hstack((pos,vel))

return states

def striptime(time):
period = np.array([])

for i in range(len(time)):
less = datetime.strptime(time.isot[i], '%Y-%m-%dT%H:%M:%S.%f')
low = less.timestamp()
period = np.append(period, low/TU)

difference = np.array([0])
p = 1
while p in range(len(period)):

haiya = period[p] - period[0]
difference = np.append(difference, haiya)
p = p + 1

return difference

################################################################################

"""Fetching the TLEs"""
LAPAN_A1 = "from launch/3LE/A1.txt"
LAPAN_A2 = "from launch/3LE/A2.txt"
LAPAN_A3 = "from launch/3LE/A3.txt"
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A1 = tle_ephemerides("from launch/A1.txt")
A2 = tle_ephemerides("from launch/A2.txt")
A3 = tle_ephemerides("from launch/A3.txt")

RVs1 = coes2rvs(A1)
RVs2 = coes2rvs(A2)
RVs3 = coes2rvs(A3)

read_a1 = readtle(LAPAN_A1)
epoch_a1 = epochs(read_a1)
sgp4_a1 = sgp4_prop(epoch_a1[1:], read_a1[1:])
sgp4_a1_coes = rvs2coes(sgp4_a1).transpose()

read_a2 = readtle(LAPAN_A2)
epoch_a2 = epochs(read_a2)
sgp4_a2 = sgp4_prop(epoch_a2[1:], read_a2[1:])
sgp4_a2_coes = rvs2coes(sgp4_a2).transpose()

read_a3 = readtle(LAPAN_A3)
epoch_a3 = epochs(read_a3)
sgp4_a3 = sgp4_prop(epoch_a3[1:], read_a3[1:])
sgp4_a3_coes = rvs2coes(sgp4_a3).transpose()

period_a1 = Time(epoch_a1[1:], format='mjd', scale='utc')
period_a2 = Time(epoch_a2[1:], format='mjd', scale='utc')
period_a3 = Time(epoch_a3[1:], format='mjd', scale='utc')

A1_T = striptime(Time(epoch_a1[1:], format='mjd', scale='utc'))
A2_T = striptime(Time(epoch_a2[1:], format='mjd', scale='utc'))
A3_T = striptime(Time(epoch_a3[1:], format='mjd', scale='utc'))

################################################################################

"""DataFrame"""
# A1_SGP4_RVS_DF = PROP_RVS(A1, RVs1, sgp4_a1.transpose())
# A1_SGP4_COES_DF = PROP_COES(A1, sgp4_a1_coes.transpose())

# A2_SGP4_RVS_DF = PROP_RVS(A2, RVs2, sgp4_a2.transpose())
# A2_SGP4_COES_DF = PROP_COES(A2, sgp4_a2_coes.transpose())

# A3_SGP4_RVS_DF = PROP_RVS(A3, RVs3, sgp4_a3.transpose())
# A3_SGP4_COES_DF = PROP_COES(A3, sgp4_a3_coes.transpose())

"""Error DataFrame"""
# A1_SGP4_RVS_ERROR = ERROR_RVS(A1, RVs1, sgp4_a1.transpose())
# A1_SGP4_COES_ERROR = ERROR_COES(A1, sgp4_a1_coes.transpose())

# A2_SGP4_RVS_ERROR = ERROR_RVS(A2, RVs2, sgp4_a2.transpose())
# A2_SGP4_COES_ERROR = ERROR_COES(A2, sgp4_a2_coes.transpose())
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# A3_SGP4_RVS_ERROR = ERROR_RVS(A3, RVs3, sgp4_a3.transpose())
# A3_SGP4_COES_ERROR = ERROR_COES(A3, sgp4_a3_coes.transpose())

"""ALLINON DataFrame"""
# A1_SGP4 = ALL_IN1(A1_SGP4_COES_DF, A1_SGP4_RVS_DF)
# A2_SGP4 = ALL_IN1(A2_SGP4_COES_DF, A2_SGP4_RVS_DF)
# A3_SGP4 = ALL_IN1(A3_SGP4_COES_DF, A3_SGP4_RVS_DF)

# A1_SGP4_Error = ALL_IN1(A1_SGP4_COES_ERROR, A1_SGP4_RVS_ERROR)
# A2_SGP4_Error = ALL_IN1(A2_SGP4_COES_ERROR, A2_SGP4_RVS_ERROR)
# A3_SGP4_Error = ALL_IN1(A3_SGP4_COES_ERROR, A3_SGP4_RVS_ERROR)

################################################################################

"""saving in .csv"""
# A1_SGP4_RVS_DF.to_csv('A1_SGP4_RVs.csv', index = False, header=True)
# A1_SGP4_COES_DF.to_csv('A1_SGP4_COEs.csv', index = False, header=True)
# A1_SGP4_RVS_ERROR.to_csv('A1_SGP4_RVs_Error.csv', index = False, header=True)
# A1_SGP4_COES_ERROR.to_csv('A1_SGP4_COEs_Error.csv', index = False, header=True)

# A2_SGP4_RVS_DF.to_csv('A2_SGP4_RVs.csv', index = False, header=True)
# A2_SGP4_COES_DF.to_csv('A2_SGP4_COEs.csv', index = False, header=True)
# A2_SGP4_RVS_ERROR.to_csv('A2_SGP4_RVs_Error.csv', index = False, header=True)
# A2_SGP4_COES_ERROR.to_csv('A2_SGP4_COEs_Error.csv', index = False, header=True)

# A3_SGP4_RVS_DF.to_csv('A3_SGP4_RVs.csv', index = False, header=True)
# A3_SGP4_COES_DF.to_csv('A3_SGP4_COEs.csv', index = False, header=True)
# A3_SGP4_RVS_ERROR.to_csv('A3_SGP4_RVs_Error.csv', index = False, header=True)
# A3_SGP4_COES_ERROR.to_csv('A3_SGP4_COEs_Error.csv', index = False, header=True)

# A1_SGP4.to_csv('A1_SGP4_All.csv', index = False, header=True)
# A2_SGP4.to_csv('A2_SGP4_All.csv', index = False, header=True)
# A3_SGP4.to_csv('A3_SGP4_All.csv', index = False, header=True)
# A1_SGP4_Error.to_csv('A1_SGP4_Error_All.csv', index = False, header=True)
# A2_SGP4_Error.to_csv('A2_SGP4_Error_All.csv', index = False, header=True)
# A3_SGP4_Error.to_csv('A3_SGP4_Error_All.csv', index = False, header=True)

################################################################################

"""Plotting"""
# plot_a1 = Coes_plot_2D(sgp4_a1_coes.transpose(), striptime(period_a1))
# A1_inplane = plot_inplane(sgp4_a1[:,0:3].transpose())
# A1_outplane = plot_outplane(sgp4_a1[:,0:3].transpose())
# A1_spatial = plot_3d(sgp4_a1[:,0:3].transpose())

# plot_a2 = Coes_plot_2D(sgp4_a2_coes.transpose(), striptime(period_a2))
# A2_inplane = plot_inplane(sgp4_a2[:,0:3].transpose())
# A2_outplane = plot_outplane(sgp4_a2[:,0:3].transpose())
# A2_spatial = plot_3d(sgp4_a2[:,0:3].transpose())
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# plot_a3 = Coes_plot_2D(sgp4_a3_coes.transpose(), striptime(period_a3))
# A3_inplane = plot_inplane(sgp4_a3[:,0:3].transpose())
# A3_outplane = plot_outplane(sgp4_a3[:,0:3].transpose())
# A3_spatial = plot_3d(sgp4_a3[:,0:3].transpose())

# plot_a1.savefig("LAPAN-A1_Propagated-COEs-SGP4.png", dpi=600)
# plot_a2.savefig("LAPAN-A2_Propagated-COEs-SGP4.png", dpi=600)
# plot_a3.savefig("LAPAN-A3_Propagated-COEs-SGP4.png", dpi=600)

# A1_inplane.savefig("LAPAN-A1_X&Y-Plane_Position-SGP4.png", dpi=600)
# A2_inplane.savefig("LAPAN-A2_X&Y-Plane_Position-SGP4.png", dpi=600)
# A3_inplane.savefig("LAPAN-A3_X&Y-Plane_Position-SGP4.png", dpi=600)

# A1_outplane.savefig("LAPAN-A1_Y&Z-Plane_Position-SGP4.png", dpi=600)
# A2_outplane.savefig("LAPAN-A2_Y&Z-Plane_Position-SGP4.png", dpi=600)
# A3_outplane.savefig("LAPAN-A3_Y&Z-Plane_Position-SGP4.png", dpi=600)

# A1_spatial.savefig("LAPAN-A1_3D_Position--SGP4.png", dpi=600)
# A2_spatial.savefig("LAPAN-A2_3D_Position--SGP4.png", dpi=600)
# A3_spatial.savefig("LAPAN-A3_3D_Position--SGP4.png", dpi=600)

from Error_Func import *

"""Fetching the necessary data"""
data_A1_2B = pd.read_csv(

"Tables-csv/A1/2B/A1_TwoBody_Error_All.csv", index_col=False, header=0
)
data_A2_2B = pd.read_csv(

"Tables-csv/A2/2B/A2_TwoBody_Error_All.csv", index_col=False, header=0
)
data_A3_2B = pd.read_csv(

"Tables-csv/A3/2B/A3_TwoBody_Error_All.csv", index_col=False, header=0
)

data_A1_J2 = pd.read_csv(
"Tables-csv/A1/J2/A1_TwoBody_J2_Error_All.csv", index_col=False, header=0

)
data_A2_J2 = pd.read_csv(

"Tables-csv/A2/J2/A2_TwoBody_J2_Error_All.csv", index_col=False, header=0
)
data_A3_J2 = pd.read_csv(

"Tables-csv/A3/J2/A3_TwoBody_J2_Error_All.csv", index_col=False, header=0
)

data_A1_SG = pd.read_csv(
"Tables-csv/A1/SGP4/A1_SGP4_Error_All.csv", index_col=False, header=0

)
data_A2_SG = pd.read_csv(

"Tables-csv/A2/SGP4/A2_SGP4_Error_All.csv", index_col=False, header=0
)
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data_A3_SG = pd.read_csv(
"Tables-csv/A3/SGP4/A3_SGP4_Error_All.csv", index_col=False, header=0

)

"""Applying the scikit linear regression model from the function definition"""
# 2B
A1_2B = coes_regres(data_A1_2B, A1_t)
A2_2B = coes_regres(data_A2_2B, A2_t)
A3_2B = coes_regres(data_A3_2B, A3_t)
A1_2B_rvs = rvs_regres(data_A1_2B, A1_t)
A2_2B_rvs = rvs_regres(data_A2_2B, A2_t)
A3_2B_rvs = rvs_regres(data_A3_2B, A3_t)

# 2BJ2
A1_J2 = coes_regres(data_A1_J2, A1_t)
A2_J2 = coes_regres(data_A2_J2, A2_t)
A3_J2 = coes_regres(data_A3_J2, A3_t)
A1_J2_rvs = rvs_regres(data_A1_J2, A1_t)
A2_J2_rvs = rvs_regres(data_A2_J2, A2_t)
A3_J2_rvs = rvs_regres(data_A3_J2, A3_t)

# SGP4
A1_SG = coes_regres(data_A1_SG, A1_T)
A2_SG = coes_regres(data_A2_SG, A2_T)
A3_SG = coes_regres(data_A3_SG, A3_T)
A1_SG_rvs = rvs_regres(data_A1_SG, A1_T)
A2_SG_rvs = rvs_regres(data_A2_SG, A2_T)
A3_SG_rvs = rvs_regres(data_A3_SG, A3_T)

"""Graphing"""
# 2B
graphs_A1_2B = coes_analysis(A1_2B)
graphs_A2_2B = coes_analysis(A2_2B)
graphs_A3_2B = coes_analysis(A3_2B)
graphs_A1_2B_rvs = rvs_analysis(A1_2B_rvs)
graphs_A2_2B_rvs = rvs_analysis(A2_2B_rvs)
graphs_A3_2B_rvs = rvs_analysis(A3_2B_rvs)

# 2BJ2
graphs_A1_J2 = coes_analysis(A1_J2)
graphs_A2_J2 = coes_analysis(A2_J2)
graphs_A3_J2 = coes_analysis(A3_J2)
graphs_A1_J2_rvs = rvs_analysis(A1_J2_rvs)
graphs_A2_J2_rvs = rvs_analysis(A2_J2_rvs)
graphs_A3_J2_rvs = rvs_analysis(A3_J2_rvs)

# SGP4
graphs_A1_SG = coes_analysis(A1_SG)
graphs_A2_SG = coes_analysis(A2_SG)
graphs_A3_SG = coes_analysis(A3_SG)
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graphs_A1_SG_rvs = rvs_analysis(A1_SG_rvs)
graphs_A2_SG_rvs = rvs_analysis(A2_SG_rvs)
graphs_A3_SG_rvs = rvs_analysis(A3_SG_rvs)

"""Errors DataFrame Information"""
COES_Error_DF = coes_information(

A1_2B, A2_2B, A3_2B, A1_J2, A2_J2, A3_J2, A1_SG, A2_SG, A3_SG
)
RVS_Error_DF = rvs_information(

A1_2B_rvs,
A2_2B_rvs,
A3_2B_rvs,
A1_J2_rvs,
A2_J2_rvs,
A3_J2_rvs,
A1_SG_rvs,
A2_SG_rvs,
A3_SG_rvs,

)
COES_Error_DF.to_csv("COES_Propagation_Error_Info.csv", index=False, header=True)
RVS_Error_DF.to_csv("RVS_Propagation_Error_Info.csv", index=False, header=True)

from symfit import parameters, variables, sin, cos, Fit
from Main_File import A1_ephemerides, A2_ephemerides, A3_ephemerides
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import julian

# Getting the needed data
data_A1_2B = pd.read_csv('Tables-csv/A1/2B/A1_TwoBody_All.csv', index_col=False, header=0)
data_A2_2B = pd.read_csv('Tables-csv/A2/2B/A2_TwoBody_All.csv', index_col=False, header=0)
data_A3_2B = pd.read_csv('Tables-csv/A3/2B/A3_TwoBody_All.csv', index_col=False, header=0)

data_A1_J2 = pd.read_csv('Tables-csv/A1/J2/A1_TwoBody_J2_All.csv', index_col=False, header=0)
data_A2_J2 = pd.read_csv('Tables-csv/A2/J2/A2_TwoBody_J2_All.csv', index_col=False, header=0)
data_A3_J2 = pd.read_csv('Tables-csv/A3/J2/A3_TwoBody_J2_All.csv', index_col=False, header=0)

data_A1_SG = pd.read_csv('Tables-csv/A1/SGP4/A1_SGP4_All.csv', index_col=False, header=0)
data_A2_SG = pd.read_csv('Tables-csv/A2/SGP4/A2_SGP4_All.csv', index_col=False, header=0)
data_A3_SG = pd.read_csv('Tables-csv/A3/SGP4/A3_SGP4_All.csv', index_col=False, header=0)

data_A1_2B_Error = pd.read_csv('Tables-csv/A1/2B/A1_TwoBody_Error_All.csv', index_col=False, header=0)
data_A2_2B_Error = pd.read_csv('Tables-csv/A2/2B/A2_TwoBody_Error_All.csv', index_col=False, header=0)
data_A3_2B_Error = pd.read_csv('Tables-csv/A3/2B/A3_TwoBody_Error_All.csv', index_col=False, header=0)

data_A1_J2_Error = pd.read_csv('Tables-csv/A1/J2/A1_TwoBody_J2_Error_All.csv', index_col=False, header=0)
data_A2_J2_Error = pd.read_csv('Tables-csv/A2/J2/A2_TwoBody_J2_Error_All.csv', index_col=False, header=0)
data_A3_J2_Error = pd.read_csv('Tables-csv/A3/J2/A3_TwoBody_J2_Error_All.csv', index_col=False, header=0)

data_A1_SG_Error = pd.read_csv('Tables-csv/A1/SGP4/A1_SGP4_Error_All.csv', index_col=False, header=0)
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data_A2_SG_Error = pd.read_csv('Tables-csv/A2/SGP4/A2_SGP4_Error_All.csv', index_col=False, header=0)
data_A3_SG_Error = pd.read_csv('Tables-csv/A3/SGP4/A3_SGP4_Error_All.csv', index_col=False, header=0)

A1_t = data_A1_2B["Epoch"]
A2_t = data_A2_2B["Epoch"]
A3_t = data_A3_2B["Epoch"]

A1_t_2B = data_A1_2B_Error["Epoch"]
A2_t_2B = data_A2_2B_Error["Epoch"]
A3_t_2B = data_A3_2B_Error["Epoch"]

A1_t_J2 = data_A1_J2_Error["Epoch"]
A2_t_J2 = data_A2_J2_Error["Epoch"]
A3_t_J2 = data_A3_J2_Error["Epoch"]

A1_t_s = data_A1_SG["Epoch"]
A2_t_s = data_A2_SG["Epoch"]
A3_t_s = data_A3_SG["Epoch"]

# extracting the ones that seemingly has periodic pattern
A1_TLE_SP = A1_ephemerides[:,1].astype(float)
A1_TLE_Ec = A1_ephemerides[:,2].astype(float)
A1_TLE_In = A1_ephemerides[:,3].astype(float)
A2_TLE_SP = A2_ephemerides[:,1].astype(float)
A3_TLE_Ec = A3_ephemerides[:,2].astype(float)

A1_2B_error_In = data_A1_2B_Error["i_e"].values

A1_J2_Ec = data_A1_J2["e_f"].values
A2_J2_Ec = data_A2_J2["e_f"].values
A1_J2_error_In = data_A1_J2_Error["i_e"].values
A1_J2_error_RN = data_A1_J2_Error["RAAN_e"].values

A1_SG_Ec = data_A1_SG["e_f"].values
A2_SG_Ec = data_A2_SG["e_f"].values
A3_SG_Ec = data_A3_SG["e_f"].values
A1_SG_error_In = data_A1_SG_Error["i_e"].values
A1_SG_error_RN = data_A1_SG_Error["RAAN_e"].values
A2_SG_error_SP = data_A2_SG_Error["p_e"].values

# Guessing the period of the periodical graph
A1_TLE_SP_guess = 1/(2725*2)
A1_TLE_Ec_guess = 1/111
A1_TLE_In_guess = 1/(2725*4)
A2_TLE_SP_guess = 1/1896
A3_TLE_Ec_guess = 1/105

A1_2B_error_In_guess = 1/4717

A1_J2_Ec_guess = 1/40.17
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A2_J2_Ec_guess = 1/49
A1_J2_error_In_guess = 1/4770
A1_J2_error_RN_guess = 1/4742.5

A1_SG_Ec_guess = 1/82.3
A2_SG_Ec_guess = 1/25.2
A3_SG_Ec_guess = 1/105.6
A1_SG_error_In_guess = 1/4720
A1_SG_error_RN_guess = 1/4803.1
A2_SG_error_SP_guess = 1/270

# Definig the dourier series
def fourier_series(x, f, n=0):

"""
Returns a symbolic fourier series of order `n`.

:param n: Order of the fourier series.
:param x: Independent variable
:param f: Frequency of the fourier series
"""
# Make the parameter objects for all the terms
a0, *cos_a = parameters(','.join(['a{}'.format(i) for i in range(0, n + 1)]))
sin_b = parameters(','.join(['b{}'.format(i) for i in range(1, n + 1)]))
# Construct the series
series = a0 + sum(ai * cos(i * f * x) + bi * sin(i * f * x)

for i, (ai, bi) in enumerate(zip(cos_a, sin_b), start=1))
return series

x, y = variables('x, y')
w, k, l = parameters("w, k, l")
w.value = A2_TLE_SP_guess ##### change according to the needed parameters
model_dict = {y: fourier_series(x, f=w, n=5)}
print(model_dict)

# Make step function data
epoch = pd.to_datetime(A2_t) ##### change according to the needed parameters
epoch_conv = epoch.apply(julian.to_jd)
xdata = epoch_conv
ydata = A2_TLE_SP ##### change according to the needed parameters

# Define a Fit object for this model and data
fit = Fit(model_dict, x=xdata, y=ydata)
fit_result = fit.execute()
print(fit_result)

# Plot the result
fig, ax = plt.subplots(figsize=(10, 10))
ax.plot(xdata, ydata, ".")
ax.plot(xdata, fit.model(x=xdata, **fit_result.params).y, ls=':')
ax.set_xlabel('MJD')
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ax.set_ylabel("p_i")
plt.show()
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Turnitin Report
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