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ABSTRACT

A Study of Laminar-Turbulent Transition on Two-Dimensional Suction Boundary
Layer

by

Lutfi Muzzaki Khairullah

Dr. Eng. Ressa Octavianty, Advisor
Triwanto Simanjuntak, PhD, Co-Advisor

In this thesis, the temporal stability of two-dimensional asymptotic suction
flow was studied at wide-range of Reynolds number. Linear stability with small
disturbances were introduced to Navier-Stokes equations in viscous boundary layer
flow, in the form of Orr-Sommerfeld equation. Here, the compressibility effect
was neglected in the assumption. A spectral collocation method was used to solve
the fourth-order ordinary differential equation (ODE) of generalized eigenvalues
problem. MATLAB and Python softwares were used to perform the numerical cal-
culation. Moreover, this thesis benefits the highly accurate and widely used open-
source function-based numerical computing system, i.e. Chebfun. Two variables
were varied, Reynolds number Re and wavenumber α to investigate the temporal
growth of disturbances in this flow. Note that in this study, Reynolds number was
from 103 to 108, and α was in the range of 0.01 to 0.30. It was found that both
variables indeed affect the temporal stability where the flow is stable for all alphas
at Re < than Re critical (Recrit = 48 000). It should be noted also that for wide
range of Reynolds numbers, no temporal growth appeared at α > 0.19. In addition,
the highest growth was observed at 198 155 < Re < 500 566, for all wavenumbers
within range of 0.1− 0.12. With the limitaton of machine and high computational
cost, the accuracy of the results is in order of O(103) for the Reynolds number and
O(10−2) for the wavenumber α.

Keyword: Orr-Sommerfeld Equation, Boundary Layer, Spectral Collocation
Method, Stability, Transition, Laminar, Turbulent, Suction

iii



A STUDY OF LAMINAR-TURBULENT TRANSITION ON TWO-DIMENSIONAL
SUCTION BOUNDARY LAYER

ACKNOWLEDGEMENTS

All praises to Allah The Most Beneficent and The Most Merciful for the accom-
plishment of this thesis. I thank God for all the opportunities, trials and strength
that have been showered on me to finish writing the thesis. I experienced so much
during this process, not only from the academic aspect but also from the aspect
of personality. My humblest gratitude to the holy Prophet Muhammad (Peace be
upon him) whose way of life has been a continuous guidance for me.

During the process of this thesis, I have gained a huge amount of assistances
and supports. I would like to sincerely thank my beloved thesis advisor, Dr. Eng.
Ressa Octavianty, and my thesis co-advisor, Triwanto Simanjuntak, PhD, for their
patience, understanding and positive motivation.

My deepest gratitude goes to all of my family members. I would like to thank
my father, mother and my sister for their support in almost every aspect.

I would like to extend my thanks to Gede, Jason, Joshua, Kiki (Rizki), Bagas,
Jordy and all of my family members of Aviation Engineering 2015 for all the support
and positive environment.

Last but not least, for everyone that I have not mentioned yet.
May God shower the above cited with all the blessings in their life.

iv



A STUDY OF LAMINAR-TURBULENT TRANSITION ON TWO-DIMENSIONAL
SUCTION BOUNDARY LAYER

Contents

Approval Page i

Statement by The Author ii

Abstract iii

Acknowledgements iv

Contents v

List of Figures viii

1 Introduction 1
1.1 General Statement of Problem Area . . . . . . . . . . . . . . . . . . 1
1.2 Research Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Significance of the Study . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Theoretical Perspective . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Research Scope and Limitation . . . . . . . . . . . . . . . . . . . . 7
1.6 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.7 Design and Instrumentation . . . . . . . . . . . . . . . . . . . . . . 8
1.8 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Literature Review 9
2.1 Introduction to Boundary Layer . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Boundary Layer Properties . . . . . . . . . . . . . . . . . . 10
2.1.2 Laminar and Turbulent Boundary Layer . . . . . . . . . . . 12

2.2 Laminar to Turbulent Transition of Boundary Layer . . . . . . . . . 15
2.2.1 The Transition Process . . . . . . . . . . . . . . . . . . . . . 15

v



2.2.2 Classification of Transition Process . . . . . . . . . . . . . . 16
2.2.3 Important Parameters that Affect Laminar to Turbulent Tran-

sition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Theory of Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 The General Concept of Stability . . . . . . . . . . . . . . . 20
2.3.2 Inviscid-Stability Theory . . . . . . . . . . . . . . . . . . . . 20
2.3.3 Viscous-Stability Theory . . . . . . . . . . . . . . . . . . . . 21

2.4 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.1 Navier-Stokes Equation . . . . . . . . . . . . . . . . . . . . 22
2.4.2 Conservation of Mass . . . . . . . . . . . . . . . . . . . . . . 23
2.4.3 Conservation of Momentum . . . . . . . . . . . . . . . . . . 23
2.4.4 Orr-Sommerfeld Equation . . . . . . . . . . . . . . . . . . . 25

2.5 Spectral Collocation Methods . . . . . . . . . . . . . . . . . . . . . 29
2.5.1 Smoothness and Spectral Accuracy . . . . . . . . . . . . . . 30
2.5.2 Eigenvalues and Fourth-Order Problems . . . . . . . . . . . 31

3 Research Methodology 33
3.1 Introduction to the Method . . . . . . . . . . . . . . . . . . . . . . 33

3.1.1 Spectral Methods . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.2 Eigenvalue and Generalized Eigenvalue Problems . . . . . . 33
3.1.3 Spectral Collocation Methods of Asymptotic Suction Bound-

ary Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 Computing Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 Chebfun Codes for MATLAB . . . . . . . . . . . . . . . . . 36
3.2.2 MATLAB and Python . . . . . . . . . . . . . . . . . . . . . 37
3.2.3 MATLAB Engine API for Python . . . . . . . . . . . . . . 39

3.3 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4 Prediction of Temporal Stability . . . . . . . . . . . . . . . . . . . . 40

4 Results and Discussions 41
4.1 Computation Variables . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Data Plot for Several Wavenumbers . . . . . . . . . . . . . . . . . . 42

4.2.1 Data Plot for Wavenumber 0.01 . . . . . . . . . . . . . . . . 42
4.2.2 Data Plot for Wavenumber 0.15 . . . . . . . . . . . . . . . . 43

vi



4.2.3 Data Plot for Wavenumber 0.24 . . . . . . . . . . . . . . . . 44
4.2.4 Data Plot for All Wavenumbers . . . . . . . . . . . . . . . . 46

4.3 Stability Analysis at Complex Plane . . . . . . . . . . . . . . . . . 46
4.3.1 Stable State . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.2 Unstable Condition . . . . . . . . . . . . . . . . . . . . . . . 49

4.4 The Contour of Stability . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4.1 Contour Plot of The Data . . . . . . . . . . . . . . . . . . . 49
4.4.2 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Summary, Conclusion, Recommendation 52
5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2 Remarks for the Future Work . . . . . . . . . . . . . . . . . . . . . 53

References 54

Appendices 56

Appendix A MATLAB and Python Codes 57
A.1 Generalized Eigenvalue Problems (MATLAB) . . . . . . . . . . . . 57
A.2 Wavenumber Data (Python) . . . . . . . . . . . . . . . . . . . . . . 57
A.3 Plot Each Wavenumber (Python) . . . . . . . . . . . . . . . . . . . 59
A.4 Plot Each Wavenumber (Python) . . . . . . . . . . . . . . . . . . . 60

Appendix B Eigenvalues Data 63
B.1 Alpha = 0.01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Turnitin Report 66

Curriculum Vitae 79

vii



A STUDY OF LAMINAR-TURBULENT TRANSITION ON TWO-DIMENSIONAL
SUCTION BOUNDARY LAYER

List of Figures

1.1 Laminar to turbulent transition from a smoke . . . . . . . . . . . . 2
1.2 Transition mechanism . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Visualization of different transition mechanisms . . . . . . . . . . . 4
1.4 Velocity profile of Blasius and turbulent boundary layers . . . . . . 4

2.1 Boundary layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Mass conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Displacement thickness . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Laminar to turbulent profile . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Laminar to turbulent transition . . . . . . . . . . . . . . . . . . . . 14
2.6 The classis pipe-flow sye experiment . . . . . . . . . . . . . . . . . 15
2.7 Boundary layer transition process . . . . . . . . . . . . . . . . . . . 17
2.8 Smoke-flow visualization of transition flow . . . . . . . . . . . . . . 18
2.9 Relative stability of a ball at rest . . . . . . . . . . . . . . . . . . . 19
2.10 Neutral curves of O-S equation . . . . . . . . . . . . . . . . . . . . 22
2.11 Notation for stresses . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 MATLAB Engine API for Python work process . . . . . . . . . . . 39

4.1 Data Plot for Alpha = 0.01 . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Data Plot for Alpha = 0.15 . . . . . . . . . . . . . . . . . . . . . . 44
4.3 Data Plot for Alpha = 0.24 . . . . . . . . . . . . . . . . . . . . . . 45
4.4 Data Plot for All Wavenumbers . . . . . . . . . . . . . . . . . . . . 47
4.5 Eigenvalues at First Pair of Reynolds number and Wavenumber . . 48
4.6 Eigenvalues at Second Pair of Reynolds number and Wavenumber . 49
4.7 The Contour Plot of Neutral Stability for A Viscous Flow . . . . . 50
4.8 The Contour Plot of Neutral Stability from Hughes and Reid . . . . 51

viii



A STUDY OF LAMINAR-TURBULENT TRANSITION ON TWO-DIMENSIONAL
SUCTION BOUNDARY LAYER

Dedicated to my parents

ix



A STUDY OF LAMINAR-TURBULENT TRANSITION ON TWO-DIMENSIONAL
SUCTION BOUNDARY LAYER

CHAPTER 1
INTRODUCTION

1.1 General Statement of Problem Area

A flow condition is one of variables in fluid that enormously affects its quality. This
condition assuredly applies for both inner and outer flow through a body. On its
application, the body must be adjusted in order to make the initial flow condition
could achieve the desired output.

A streamlined and smooth flow is the primary characteristic of laminar flow.
The flow streams without obstruction, and any swirls or cross currents do not exist
along the line of the flow. Although the layers are not crossing and intersecting
each other, the fluid layers will still flow at different speeds. The center layer has
the fastest flow speed while slower speed occured with the increasing distance from
the center of the flow. Laminar flow usually occured at low Re.

Regardless of the fact that laminar flow is worthwhile to reduce drag production
on the wing surface, the characteristic of the wing may not withstand much laminar
flow. The North American P-51 Mustang was the former aircraft which purposely
conceived to take advantage of laminar flow airfoils. Nevertheless, wartime inves-
tigation data of National Advisory Committee for Aeronautics (NACA) indicates
that Mustangs were not designed to retain superior laminar flow on the wing with
adequate surface performance (Laminar Flow Airfoil, 2015).

Notwithstanding, turbulent flow (usually occured at high Re) is a flow which
its particles move randomly and chaoticly. Numerous layers mix with each other
and a huge amount of friction is appeared between the boundaries of the different
layers. Eddies and whirlpools are produced within the flow. A significant transfer
of energy, mass and momentum are consisted in turbulent flow. The flow will
remains turbulent and irregular as long as the energy prevails. The flow returns
back to laminar state whenever the energy is totally conserved (Nelson, 2018).

1/79
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Figure 1.1: Laminar to turbulent transition from a smoke cigarette
(Courtesy of flickr)

Turbulent flow is still not numerically well established in fluid dynamics. A
simple instance of a transition phenomena can be found on a smoke from a cigar-
rete, as shown in Figure 1.1. At first, the flow streams laminarly. Due to the
presence of the disturbance on its surroundings, the flow then become turbulent.
Although turbulence can be experimentally examined in wind tunnels and modeled
numerically, most of the turbulent flow behavior remains uncertain. Studying the
turbulent behavior, the turbulent boundary layer in particular, can provide insight
into turbulence control and how to reduce the drag of the surface friction in various
technical applications (Spaulding, 2019).

Transition flow is a mixture of both flows (intermittent fluctuation). This flow
never occurs if Re < Recrit. For streamline body, postponing or delaying the
transition may reduce the production of pressure drag.

A laminar boundary layer can be destabilized by many factors that cause it
to become turbulent. Examples of destabilizing effects include surface roughness,
adverse pressure gradients, acoustic and heat energy. The growth of skin friction
is the significant outcome of a chaotic boundary layer once it is transitioned. To
sustain a laminar stream, a favorable pressure gradient is required. A large por-
tion of prosperous pressure gradients is substantial for laminar flow airfoils. The
common definition of the airfoil’s laminar flow is that the desired pressure gradient

2/79
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420 15. Onset of Turbulence (Stability Theory)

Flat plate at zero incidence. Just as with a body of revolution, the
laminar–turbulent transition can be observed for a flat plate at zero inci-
dence. For the laminar boundary layer at a plate, Sect. 6.5 showed us that
the boundary–layer thickness grows with

√
x, where x is the distance from

the leading edge. The transition from the laminar to the turbulent boundary
layer was first investigated by J.M. Burgers (1924), B.G. Van der Hegge Zi-
jnen (1924), later by M. Hansen (1928) and more comprehensively by H.L.
Dryden (1934, 1937, 1939). Close to the leading edge of the plate, the bound-
ary layer is initially always laminar but further downstream it then becomes
turbulent. For a plate with a sharp leading edge, the laminar–turbulent tran-
sition in a normal air stream takes place at a distance x from the leading
edge, given by

Rex crit =

(
U∞x

ν

)
crit

= 3.5 · 105 to 106 .

As for a pipe, the critical Reynolds number for a plate at zero incidence can
be raised if an outer flow free from perturbations (low turbulence intensity)
is ensured.

Fig. 15.5. Sketch of laminar–
turbulent transition in the bound-
ary layer on a flat plate at zero in-
cidence, after F.M. White (1974)
(1) stable laminar flow
(2) unstable Tollmien–Schlichting
waves

(3) three–dimensional waves and
vortex formation
(Λ-structures)

(4) vortex decay
(5) formation of turbulent spots
(6) fully turbulent flow

The experimental results are shown in the basic sketch in Fig. 15.5. Two–
dimensional Tollmien–Schlichting waves are superimposed onto the laminar
boundary–layer flow at the indifference Reynolds number Reind. These can
be described using primary stability theory (cf. Sect. 15.2.2). Because of sec-
ondary instabilities (cf. Sect. 15.3.2), three–dimensional disturbances are su-
perimposed further downstream. These lead to a characteristic Λ-structure
formation. The Λ-vortices are replaced by turbulent spots, which initiate the
transition to fully turbulent boundary–layer flow. At Rex = Rex crit, the tran-
sition process is complete, and further downstream the flow is fully turbulent.

Figure 1.2: Various transition mechanism in boundary layer flow
(Schlichting & Gersten, 2016)

culminates between 30% and 75% of the chord.
As shown in Figure 1.2, transition mechanism can be categorized as stable

laminar flow; unstable TollmienSchlichting (TS) waves; three-dimensional waves
and vortex formation (Λ -structures); vortex decay; formation of turbulent spots;
and fully turbulent flow.

The prediction of Recrit is challenging as it is highly dependent on intensity of
disturbance (u′). Figure 1.3a, 1.3b and 1.3c show different process of transition
for 0.2%, 0.3% and 0.4% freestream disturbances (u′), respectively. For small
disturbance, linear stability theory can accurately predict the Recrit. The condition
is stable if there is tendency to return to initial condition, no growth in disturbance.
A more comprehensive explanation about linear stability theory will be explained
later in Chapter 2.

Figure 1.4 shows a velocity profile of Blasius and turbulent boundary layers. By
linear stability theory, the Recrit of spatio-temporal stability is predicted at 520.
From this case, arise one question, is it possible to increase the crit Re with flow
control?

The importance of the study of laminar to turbulent transition brings up the
topic to be remarkably necessary to be discussed since the transition affects quite
significant in aerospace engineering applications. The transition affects the per-
formance of an aircraft, such as range, which leads to a specific fuel consumption.
Also, it impacts the aerodynamics quantity, e.g., drag and heat pulse. Another
consequence is on the aircraft moment.

3/79
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Visualization of different transition
mechanisms
W. S. Saric
Arizona State University

The sequence of photos in Figs. 1(a)–1(d) illustrates the
different types of boundary-layer transitions that occur as a
function of Tollmien–Schlichting (T–S) wave amplitude and
fetch.1 The presence of these different mechanisms was first
revealed through flow visualization,2 and subsequent hot-
wire measurements1–3 confirmed the details. The distance
from the leading edge is shown in cm. Tollmien–Schlichting
waves are introduced by means of a vibrating ribbon located
at 48 cm (near branch I of the neutral stability curve) at a
frequency of 39 Hz. The flow velocity is 6.6 m/sec. An IIT-
type smoke wire is placed at x!138 cm and y!0.1 cm.
Branch II of the neutral stability curve for dimensionless
frequency F!83"10#6 is x!170 cm. The T–S wave ampli-
tude is referenced to the branch II point.

Figure 1 shows (a) 2-D T–S waves where u$!0.2%, (b)
staggered structure I where u$!0.3%, (c) staggered struc-
ture II where u$!0.4%, (d) an ordered peak-valley struc-
ture where u$!1%.

As the T–S wave amplitude is increased through Figs.
1(a)–1(d), the pattern changes from regular T–S waves to a
staggered 3-D pattern with a large spanwise wavelength to
a staggered pattern with a small spanwise wavelength to an
ordered peak-valley pattern. The staggered peak-valley
structure is a sufficient condition for the existence of sub-
harmonics. Note that subharmonic breakdown occurs
outside of the unstable region of the primary wave. This
proved the value of the flow visualization. Reference 2
concludes that Fig. 1(b) is accounted for by the theory of
Craik, while 1(c) is described by the theory of Herbert,
and 1(d) is typical of the experiments of Klebanoff. Figure
2 is a closeup of the ordered peak-valley structure of the
Klebanoff-type breakdown process.

This work was supported by the Air Force Office of
Scientific Research under Contract Nos. 82-NA-0229 and
85-NA-077.

Transition and turbulence 99
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outside of the unstable region of the primary wave. This
proved the value of the flow visualization. Reference 2
concludes that Fig. 1(b) is accounted for by the theory of
Craik, while 1(c) is described by the theory of Herbert,
and 1(d) is typical of the experiments of Klebanoff. Figure
2 is a closeup of the ordered peak-valley structure of the
Klebanoff-type breakdown process.

This work was supported by the Air Force Office of
Scientific Research under Contract Nos. 82-NA-0229 and
85-NA-077.

Transition and turbulence 99

A Gallery of Fluid Motion, ed. M. Samimy et al. Published by Cambridge University Press. © Cambridge University Press, 2003.

Keywords

boundary-layer transition; Tollmien–Schlichting wave;
Klebanoff breakdown; smoke visualization.

1W. S. Saric and A. S. W. Thomas, Turbulence and Chaotic Phenomena in

Fluids, ed. T. Tatsumi (North-Holland, Amsterdam, 1984).
2A. S. W. Thomas and W. S. Saric, Bull. Am. Phys. Soc. 26, 1252 (1981).
3W. S. Saric, V. V. Kozlov, and V. Ya. Levchenko, AIAA Paper No.

84–0007 (1984).

Figure 1(a)

Figure 1(b)

Figure 1(c)

Figure 1(d)

Figure 2

(c)

Figure 1.3: Visualization of different transition mechanisms
(Saric, 1986)

422 15. Onset of Turbulence (Stability Theory)

Investigations by H.W. Emmons; A.E. Bryson (1951/52) and G.B. Schu-
bauer; P.S. Klebanoff (1955) have shown that the turbulent spots in Fig. 15.6
appear irregularly at arbitrary positions in the boundary layer and wander
downstream in a wedge shaped region. Such turbulent spots appear at irreg-
ular time intervals at different irregularly distributed positions on the plate.

Fig. 15.7. Velocity profile of the plate boundary layer close to the laminar–
turbulent transition, after measurements by G.B. Schubauer; P.S. Klebanoff (1955)
(1) laminar, Blasius profile
(2) turbulent, profile from Fig. 18.5, δ = 17mm
outer velocity U∞ = 27m/s
outer flow turbulence intensity Tu = 3 · 10−4

As can be seen from Fig. 15.5, the transition occurs together with a strong
increase in the boundary–layer thickness. In the laminar boundary layer,
the dimensionless boundary–layer thickness δ/

√
νx/U∞ is constant and ap-

proximately equal to 5, cf. Eq. (6.60). Figure 2.4 shows this dimensionless
boundary–layer thickness plotted against the Reynolds number formed with
the length x, namely Rex = U∞x/ν. For Rex ≥ 3 · 105 a great increase in the
boundary–layer thickness occurs. As well as this, there is also a noticeable
change in the form of the time averaged velocity profile. Figure 15.7 shows
the velocity profile in a transition region from about Rex = 3·106 to 4·106 for
a free stream with very low turbulence intensity, according to measurements
by G.B. Schubauer; P.S. Klebanoff (1955). Within this region, the velocity
distribution is reshaped from that of the Blasius profile for the laminar plate
boundary layer (H. Blasius (1908), cf. Fig. 6.6a and Fig. 6.7) to that of the
fully turbulent plate boundary layer, cf. Sect. 18.2.5.

Figure 1.4: Velocity profile of Blasius (1) and turbulent (2) bound-
ary layers
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Suction is widely used to control the flow. The velocity profile of boundary
layer with suction can be written as:

U/U∞ = 1− eyvw/ν (1.1)

where vw is the suction velocity, ν is dynamic viscosity.
As briefly explain in the background, it is necessary to investigate the transition

of controlled boundary layer (suction), i.e. temporal stability analysis using linear
stability theory.

1.2 Research Purpose

The objectives of this research are:

• To derive the Orr-Sommerfeld Equation for a 2D streamline body for a certain
base flow.

• To build a numerical tool to solve the Orr-Sommerfeld Equation.

• To predict laminar-turbulent transition (Recrit) in terms of temporal stability
and disturbance growth of suction boundary layer.

• To compare the results with other studies.

1.3 Significance of the Study

The results of this research are expected:

• The solution can be used to understand the mechanism and behavior of the
transition flow on a 2D streamline body.

• It can be used to predict the disturbance growth and stability on the bound-
ary layer.

• The understanding can be used to control the boundary layer development
and drag reduction.
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• The possibility of controlling the boundary layer above the surface may sup-
port aerospace industries to optimize the performance of aircrafts since lam-
inar flow provides much lower-skin friction drag than turbulent flow.

1.4 Theoretical Perspective

Since Newton’s second law of motion introduced by Sir Isaac Newton in 1686,
studies on fluid has been developed rapidly. This was shown by the findings of
Euler’s Equation, which applied for both compressible and incompressible flow,
to explain the fluid motion governing adiabatic and inviscid flow derived from
Newton’s second law in 1757.

Almost one century thereafter, Navier, Poisson, Saint-Venant, and Stokes de-
veloped his equation in fluid motion by introducing the effect of element of vis-
cosity between 1827 and 1845. The Equation is called Navier-Stokes Equation
and is only valid for incompressible flow. At the beginning of the 20th century,
Orr-Sommerfeld Equation has derived by William McFadden Orr and Arnold Som-
merfeld to describe the linear 2D modes of disturbance to a viscous parallel flow,
which will be used later on the thesis, by linearizing the Navier-Stokes Equation.

This addition of viscosity produces the boundary layer which acts to the surface
of a body. The boundary layer is an extremely thin layer of viscous fluid close to
the surface of a solid body in contact with a stream in motion in which the region
starts from where its velocity is less than its free stream velocity, and then decreases
in a parabolic basis.

In engineering applications, the concept above has been used widely in trans-
portation industries, aerospace industries in particular. To be more specific, the
equation has been used for the development of an airfoil, which is a cross-section
of an aircraft wing.

Practically, aircrafts are flying through free stream velocity, assumed to be
uniform and laminar flow. Due to the natural characteristics of the airfoil, it
is possible for the flow to change from laminar to turbulent flow when passing
through the airfoil. It occurs in a certain region in the surface when the flow starts
to separate from the surface of the body. This point is called a transition point.
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Both laminar and turbulent flow are common and natural phenomena to occur
in an airfoil. They even still produce drag force on each type of flow. In laminar
flow, the friction of the body surface creates a friction drag. While in turbulent flow,
the fluid motion is characterized by chaotic changes in pressure and flow velocity,
thus it creates drag force. Nevertheless, the drag force can not be eliminated since
it will always be correlated and created when producing lift force.

In view of the fact that both forces will always be generated, the solution
to this case is to analyze the effect of Reynolds number and wavenumber to the
stability and transition flow, through which an optimum lift to drag ratio may be
achieved. The word optimal here will always refer to the fuel consumption, time
of travel and flying comfort. To be more specific, the transition point affects the
amount of the lift to drag ratio. Variables that could affect the transition point are
surface geometry and material, angle of attack, velocity, and environment. Current
development mostly focused on the geometry and material of the body surface to
achieve the desired location of the transition point, hence producing the appropriate
lift to drag ratio as well.

1.5 Research Scope and Limitation

The research scopes and limitations for this study are:

1. The base flow is incompressible suction bundary layer flow.

2. No heat transfer in and out of boundary layer.

3. Momentum due to gravitational force is neglected.

4. Small perturbation in the transverse direction is included in the governing
equation.

5. Perturbation in streamwise and spanwise directons are neglected.

6. The transverse momentum is completely damped by the viscosity on the
boundary layer.
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1.6 Methodology

Steps that will be taken for this thesis are:

1. Apply the Orr-Sommerfeld Equation for the specific base flow.

2. Apply the equation with a spectral collocation method.

3. Arrange the equation to satisfy the generalized eigenvalue problems.

4. Develop the numerical tool by using scientific computational softwares (MAT-
LAB and Python).

5. Execute the programmed numerical tool to calculate the eigenvalues.

6. Analyze the stability and transition of the obtained eigenvalues.

7. To confirm the results in this research, comparison with the results with other
studies is considerably substantial.

1.7 Design and Instrumentation

This research will be done by a spectral collocation method. Consequently, a
scientific computational tool, which is Python, will be assigned. After the equation
has been derived, a program through the software will be made to calculate the
transition point.

Various constraints that affect the determination of the transition point will
also be applied in order to acquire more accurate results. Two variables, namely
Reynolds number and wavenumber, will be varied for case studies. Its influence to
the boundary layer will substantially be taken into account.

1.8 Data Analysis

The data analysis for this research will be conducted by using a numerical method.
By varying the Reynolds number and wavenumber, the eigenvalues (output) will
be used to examine the transition flow, stability and disturbance growth.
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CHAPTER 2
LITERATURE REVIEW

2.1 Introduction to Boundary Layer

A concept that ultimately transformed the viscous flows analysis in the twentieth
century and with which the empirical experiment of drag and flow separation over
a surface were feasible, is called a boundary layer. Ludwig Prandtl, a German
Engineer who first introduced this theory in 1904, stated that when a freestream
fluid moves through an aerodynamic body, the flow will be divided into two layers
(Abidin, 2015), as illustrated in Figure 2.1.

• Inner layer
Inside this thin layer where 0 ≤ y ≤ δ, the effect of viscous force is of im-
portance. This layer is the so-called a boundary layer. Deceleration of fluid
velocity has occurred in this zone in view of the fact that it is a non-slip
condition at the boundary surface. This retarded layer leads to further de-
celeration for the adjacent layer. Thus, generating a thin layer in which the
flow velocity increases from zero at the solid surface to the value approaches
the velocity of the freestream velocity.

The existence of velocity gradient inside this boundary layer region affects
the fluid particle to twist seeing that the upper part of the particle has a
larger speed than its bottom. Consequently, this fluid layer can be assuemed
as a rotational flow.

• Outer layer
On this outer flow region where y ≥ δ, the viscous force is quite inadequate
and can be neglected. The absence of the velocity gradient in this layer causes
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1000 PART 4 Viscous Flow

the simplification of the Navier-Stokes equations by neglecting certain terms that
are smaller than other terms. This is an approximation, not a precise condition as in
the case of Couette and Poiseuille flows in Chapter 16. In this chapter, we will see
that the Navier-Stokes equations, when applied to the thin viscous boundary layer
adjacent to a surface, can be reduced to simpler forms, albeit approximate, which
lend themselves to simpler solutions. These simpler forms of the equations are
called the boundary-layer equations—they are the subject of the present chapter.

17.2 BOUNDARY-LAYER PROPERTIES
Consider the viscous flow over a flat plate as sketched in Figure 17.3. The viscous
effects are contained within a thin layer adjacent to the surface; the thickness is
exaggerated in Figure 17.3 for clarity. Immediately at the surface, the flow velocity
is zero; this is the “no-slip” condition discussed in Section 15.2. In addition, the
temperature of the fluid immediately at the surface is equal to the temperature
of the surface; this is called the wall temperature Tw, as shown in Figure 17.3.
Above the surface, the flow velocity increases in the y direction until, for all
practical purposes, it equals the freestream velocity. This will occur at a height
above the wall equal to δ, as shown in Figure 17.3. More precisely, δ is defined
as that distance above the wall where u = 0.99ue; here, ue is the velocity at
the outer edge of the boundary layer. In Figure 17.3, which illustrates the flow
over a flat plate, the velocity at the edge of the boundary layer will be V∞; that
is, ue = V∞. For a body of general shape, ue is the velocity obtained from an
inviscid flow solution evaluated at the body surface (or at the “effective body”
surface, as discussed later). The quantity δ is called the velocity boundary-layer
thickness. At any given x station, the variation of u between y = 0 and y = δ,
that is, u = u(y), is defined as the velocity profile within the boundary layer, as
sketched in Figure 17.3. This profile is different for different x stations. Similarly,
the flow temperature will change above the wall, ranging from T = Tw at y = 0
to T = 0.99Te at y = δT . Here, δT is defined as the thermal boundary-layer
thickness. At any given x station, the variation of T between y = 0 and y = δT ,
that is, T = T (y), is called the temperature profile within the boundary layer, as
sketched in Figure 17.3. (In the above, Te is the temperature at the edge of the

Vw ! 0, T ! Tw

qw
Velocity
profile

Temperature
profile

V"

T"

y

x

T

!w

"T

"
Outer edge of velocity boundary layer, u ! ue Outer edge of thermal boundary layer, T ! Te 

Figure 17.3 Boundary-layer properties.

Figure 2.1: Properties of boundary layer (Anderson, 2016)

the fluid particle will not rotate as soon as it enters the outer flow region.
Hence, the flow can be assumed as an irrotational flow.

Prandtl’s concept of a boundary layer adjacent to an aerodynamic body results
in the reduction and simplification of Navier-Stokes equations to a more amenable
form by neglecting certain terms called the boundary-layer equations. Successively,
these boundary-layer equations can be solved to achieve the distributions of shear
stress and aerodynamics heat transfer to the surface.

2.1.1 Boundary Layer Properties

Consider a viscous flow over a flat surface with a certain length in the x direction
as depicted in Figure 2.1 from (Anderson, 2016). The y − axis indicates the
vertical distance from the flat plate surface. The viscous effects are included inside
the thin layer adjacent to the surface. For clarity, the thickness of the layer is
overemphasized.

Boundary-Layer Thicknesses

The no-slip condition allows the flow velocity at the surface to be zero. The flow
velocity increases to the value of freestream velocity U∞ above the surface up to
a distance equal to δ. To enhance the accuracy, δ is determined to be the velocity
boundary-layer thickness, which is the height over the surface with u = 0.99ue. The
velocity at the outward side of the boundary layer denoted by ue. For this reason,
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ue = V∞. The change in u at 0 ≤ y ≤ δ, that is u = u(y), is defined as the velocity
profile at the boundary layer at a given x point. For each of the x station, the
velocity profile is different as well.

Correspondingly, the fluid temperature at the surface, which is called the wall
temperature Tw, is equal to the surface temperature. The flow temperature varies
above the surface, ranging from Tw ≤ T ≤ Te at 0 ≤ y ≤ δT . δT denotes as the
thermal boundary-layer thickness. The variation of T , that is T = T (y), is called
the temperature profile within the boundary layer at any given x station. Since the
temperature at the outer edge of the boundary layer is T∞, then Te = T∞.

From here, two boundary layers can be concluded as a velocity boundary layer
with thickness δ and a temperature boundary layer with thickness δT . In broad
terms, δ ̸= δT since the Prandtl number affects the relative thicknesses. If Pr = 1,
then δ = δT ; if Pr > 1, then δT < δ; if Pr < 1, then δT > δ. As evidenced in
Figure 2.1, the thermal boundary layer has a larger thickness than the velocity
boundary layer as Pr = 0.71 for air at standard condition. It should be noticed
that both boundary layer thicknesses improve with the distance x from the leading
edge, which is δ = δ(x) and δT = δT (x).

Shear Stress And Heat Transfer

The velocity gradient at the surface induces the development of shear stress at the
surface,

τw = µ

(
∂u

∂y

)
w

(2.1)

where (∂u/∂y)w is the velocity gradient calculated at y = 0 (i.e. at the surface).
Correspondingly, heat transfer at the surface is generated by the temperature gra-
dient at the surface,

q̇w = −k
(
∂T

∂y

)
w

(2.2)

where (∂T/∂y)w is the temperature gradient calculated at y = 0 (i.e. at the
surface). It should be remarked that τw and q̇w are functions of distance x from
the leading edge, which is τw = τw(x) and q̇w = q̇w(x).
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Figure 2.2: Control volume definition for the analysis of flow
through a flat plate (White, 2006)

Displacement Thickness

Consider a flow of fluid past through a stationary aerodynamic surface with velocity
U as exemplified in Figure 2.2. In the region of boundary layer, the velocity gradient
is generated with the appearance of viscosity and no-slip condition at the surface.
For this control volume, conservation of mass is acquired by assuming a steady and
incompressible flow. Notice that Y = H + δ∗, the mass-flow rate can be stated as
follows (White, 2006):

δ∗ =

∫ Y→∞

0

(
1− u

U

)
(2.3)

Equation 2.3 conveys the proper definition of the boundary-layer displacement
thickness δ∗ (function of x) to determine conservation of mass in steady flow, as
illustrated in Figure 2.3. It represents the streamlines displacement at the outer
flow generated by the boundary layer. It applies for any incompressible flow, both
laminar and turbulent, constant or variable temperature, and constant or variable
pressure.

2.1.2 Laminar and Turbulent Boundary Layer

The boundary layer is either laminar or turbulent. The flow is completely laminar
near the leading edge in which each level shifts past the nearby layers. In addition to

12/79



A STUDY OF LAMINAR-TURBULENT TRANSITION ON TWO-DIMENSIONAL
SUCTION BOUNDARY LAYER

Equal 
areas

δ*

Figure 2.3: Displacement thickness of boundary layer

that, any interchange of mass or momentum of fluid particles occures only between
adjacent layers and is not mixed, as illustrated in Figure 2.4. Subsequently, the
shear stress within the fluid is utterly a function of the viscosity µ and velocity
gradients. The speed of flow within each layer is constant and increase with the
distance y from the wall. The laminar boundary layer is generated within a range
of small Reynolds numbers.

On the contrary, the turbulent flow turns out to be unstable and particles
of fluid tends to move both perpendicular and parallel to the wall. Ergo, the
previously homogeneous flow begins to converge and fluid particles are transferred
across the neighboring surfaces, as shown in Figure 2.4. This kind of flow is known
as turbulent as a result of this apparently random movement.

Compared to the laminar boundary layer, the change of mass, energy and mo-
mentum is on a significantly higher rate. Owing to the greater extent of mixing
in the main flow, the boundary layer thickness δ increases at a quicker rate in a
turbulent boundary layer. Nevertheless, in the immediate proximity of the wall,
the random irregularities and mixing in turbulent cannot appear. From Figure
2.5, a viscous sublayer forms underneath the turbulent boundary layer in which
the flow is laminar (On Boundary Layers: Laminar, Turbulent and Skin Friction,
2016; Laminar and Turbulent Boundary Layers, 2005).

In this thesis however, further explanation on turbulent boundary layer is re-
frained from discussion since the main topic is laminar boundary layer.
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Figure 2.4: Common velocity profiles for laminar and turbulent
boundary layers
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Fig. 4. Turbulent boundary layer over a flat plate. 

 
 
In equation (5), Reynolds stress term can be expressed as [30]: 
 

                 (7) 

 
where  is the turbulence eddy viscosity. Substituting equation (7) into equation (5) gives: 
 

               (8) 

 
By applying Prandtl mixing length [30], the turbulence eddy viscosity can be written in the 

following form: 

                  (9) 

 
in which  is the Prandtl mixing length. The stream function is described as bellow: 

               (10) 
 
where 
 

                (11) 

 
It is worth mentioning that and  are exclusive functions of and , respectively. 

Figure 2.5: Phase of transition from laminar to turbulent bound-
ary layer (Shahmohamadi & Rashidi, 2017)

14/79



A STUDY OF LAMINAR-TURBULENT TRANSITION ON TWO-DIMENSIONAL
SUCTION BOUNDARY LAYER

(a) (b)

(c)

Figure 2.6: The classic pipe-flow dye experiment of (Reynolds,
1883): (a) low speed: laminar flow; (b) high speed: turbulent flow;

(c) spark photograph of condition (b)

2.2 Laminar to Turbulent Transition of Bound-
ary Layer

The linearized stability theory predicts the extermination of laminar flow specific
certain Reynolds number. Turbulence is known as the early disruption of laminar
flow by way of enlargement of miniscule disturbances, the flow streams through
a complex order of spatial alterations, which leads to capricious and random yet
oddly reasonable and wondrously stable occurence. Transition is then defined as
the entire shifting process from laminar to turbulent flow (White, 2006).

As shown in Figure 2.6, a transition experiment in a pipe flow by inserting dye
into the inlet of a spherical duct was conducted (Reynolds, 1883). As can be seen
in Figure 2.6a, the flow remained laminar at low speed Re < 2000, and the dye
remained along a closely straight and distinct streamline. When the speed was
given a rise to a range of Re between 2000 and 13 000, the streamline separated
somewhere downward and combined expeditiously with the surrounding water in
the pipe, as shown in Figure 2.6b. A spark photograph in Figure 2.6c exposes that
the instantaneous filament is still restrained to a different set of curls and eddies.

2.2.1 The Transition Process

The process of transition in boundary-layer flow through a soft wall comprises of
the processes as follows (White, 2006):
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1. Laminar flow around the leading edge in a stable state.

2. Two-dimensional Tollmien-Schlichting waves begin to be unstable.

3. Generation of hairpin eddies and three-dimensional unstable waves.

4. Vortex separation at areas of major localized shear.

5. Cascading vortex distribution into completely three-dimensional fluctuations.

6. Creation of turbulent locations at locally strong fluctuations.

7. Unification of spots into completely turbulent flow.

2.2.2 Classification of Transition Process

In fluids engineering, there are several mechanisms of transition process in bound-
ary layer. The modes of transition are:

1. Natural transition
This is the step-by-step process of Figure 2.7 and 2.8 due to infinitesimal
disturbances which has already described in the explanation above. This
transition is the most common appearance mechanism on transport aircraft
during a flight (Medida, 2014).

2. Bypass transition
The initial phases of natural instability may be missed by the flow if the sur-
faces vibrating or are rough, the freestream moves disorderly, or the flow sub-
jected to acoustic waves. Thus, it will pass immediately to vortex breakdown
or turbulent spots generation. This bypass is caused by large disturbances.

3. Separated-flow transition
"When a laminar boundary layer separates, transition may occur in the shear
layer of the separated flow as a result of the inviscid instability mechanism
(Langtry et al., 2006)". Some examples which cause the separation are ad-
verse pressure gradient, trip wires, and airfoil leading edge which has a small
radius (Islam, 2015).
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Figure 2.7: Idealized sketch of flat-plate flow boundary-layer tran-
sition process (Courtesy of J. T. Kegelman and T. J. Mueller, Uni-

versity of Notre Dame)

4. Wake Induced Transition
The most significant impact of instability on transition is due to the periodic
crossing of wakes from upstream leading edge and is known as "wake-induced"
transition (Mayle, 1991). "One very important instance of bypass transition
arises in turbomachinery flows where the blade rows are subjected to period-
ically passing turbulent wakes (Langtry et al., 2006)".

5. Reversed Transition
This category is also referred to relaminarization. If the flow is greatly
speeded up, this transition from turbulent to laminar flow is highly feasible
(Langtry et al., 2006). An equilibrium between convection, production, and
dissipation of turbulent kinetic energy is included in this transition within
the boundary layer.
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Figure 2.8: Smoke-flow visualization of flow with transition in-
duced early by acoustic input at ReL = 814, 000 and 500Hz. (Cour-
tesy of J. T. Kegelman and T. J. Mueller, University of Notre

Dame)

2.2.3 Important Parameters that Affect Laminar to Tur-
bulent Transition

The basic theory of transition has never been prevailed, but a number of parameters
based on experiments are conceivable to forecast the final appearance of totally
turbulent stream. Comprehensibly, only one or two of the parameters are being
addressed in most of the estimation. The parameters are as follows:

1. Freestream turbulence;

2. Wall roughness;

3. Pressure gradient;

4. Wall suction or blowing;

5. Wall heating or cooling.
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(a) (b)

(c) (d)

Figure 2.9: Relative stability of a ball at rest (White, 2006): (a)
stable; (b) unstable; (c) neutral stability; (d) stable for small dis-

turbances but unstable for large ones

2.3 Theory of Stability

As briefly discussed in Chapter 1, the laminar to turbulent transition can be pre-
dicted from theory of stability. Laminar flows have a serious imperfection on its
poor resistancy to high Reynolds numbers. There is a certain Reynolds number
which jeopardize its very presence for any given laminar flow. Higher Reynolds
numbers tends to make the flow always turbulent, i.e., randomly unstable, disor-
derly, mostly impracticable to be analyzed accurately, yet favorably compliant to
examine of its average values.

Coffee stirred in a mug mixes turbulently. Water flow through a bathroom
shower duct passes turbulently. Smoke rises from a chimney rises in turbulent.
Moreover, the boundary layer on a wing of commercial aircraft streams turbulently.
Concurrently, laminar flow should still be taken into account since many pragmatic
events appear that are laminar, namely low-speed flows, small-scale bodies, high-
viscosity fluids, or leading-edge concerns.

The basic concept of stability has been addressed frequently and loquaciously
by Cunningham (1963). This question will often be confined to the discussion: Can
a certain physical state withstand a disturbance and likely to return to its original
state? If so, then it is stable. If not, that is what we called the unstable state
(White, 2006).
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2.3.1 The General Concept of Stability

Figure 2.9 is a simple instance to explain the concept of stability, where a ball
stands at rest under multiple conditions. In Figure 2.9a, the position of the ball
is unconditionally stable as it would yield to its originating position even if a huge
disturbance is applied. As opposed to that, an unstable state is shown in Figure
2.9b owing to the fact that the ball would fall and never to return by any trivial
disturbance. Figure 2.9c is a case of neutral stability because the ball will rest on its
flat surface anywhere it is displaced. Lastly, Figure 2.9d shows a more complicated
situation in which the ball is stable for minor travels yet will deviate if disturbed
quite a distance to topple over the side limit.

The above case is frequently occurred in the flow of boundary-layer, where a
cable can affect an otherwise stable laminar flow transformed into turbulent. It
should be pointed out that stability needs only a yes or no answer. We can confirm
that laminar flow in viscous flow is unstable after it reaches particular Reynolds
numbers. Since turbulence is an experimental basis fact, the analysis does not
predict turbulence. It has never been demonstrated mathematically that turbulent
flow is the adequate stable state at elevated Reynolds numbers. For that reason,
we can only address the transition in a qualitative approach. It is determined as
the alteration, over space and time and a particular Reynolds number range, of a
laminar flow into a turbulent flow (White, 2006).

2.3.2 Inviscid-Stability Theory

In the case of an infinite Reynolds number, in which the viscosity is negligible, we
can also cancel out the term of ν in the Orr-Sommerfeld equation in Eq. 2.36.
From this, we can get the relation of an inviscid-disturbance

ϕ′′ −
(

U ′′

U − c
+ α2

)
ϕ = 0 (2.4)

which is named after Lord Rayleigh. The equation can be solved either analytically
or numerically. The equation also asserts a point of inflection to be an origin
of possible instability as Reynolds number advances infinity. Conditions on the
tangential velocity u can not be maintained since the Rayleigh equation is second
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order. On the boundary layer, the condition is

ϕ(0) = ϕ(∞) = 0 (2.5)

2.3.3 Viscous-Stability Theory

All kinds of laminar profiles turns out to be unstable at certain Reynolds numbers.
These unsteadiness are indicated in the eigenvalues of the Orr-Sommerfeld equation
which will be discussed more detailed in further section. The dimensionless final
form is:

(
Ū − c̄

) (
ϕ̄′′ − α2

δ ϕ̄
)
− Ū ′′ϕ̄+

i

αδReδ

(
ϕ̄′′′′ − 2α2

δ ϕ̄
′′ + α2

δ ϕ̄
)
= 0 (2.6)

The boundary layer conditions for this relation are

ϕ(0) = ϕ′(0) = 0

ϕ(∞) = ϕ′(∞) = 0
(2.7)

The eigenvalues αδ and c̄ can be determined with a specified velocity profile
U(y) and varying Reδ. The situation can be evaluated for either temporal stability
(real αδ) or spatial stability (real ω̄ = αδ c̄). The result will be unstable if we find
eigenvalues for temporal instability

c̄i > 0 (2.8)

and spatial instability
αδi < 0 (2.9)

To satisfy the freestream boundary conditions in Eq. 2.7, we set Ū ′′ = 0.
The theories of viscosity forecast a limited area at low Reynolds numbers (of

the order of Reδ) where infinitesimal disturbances are magnified (ci greater than
zero). The boundary of this region is what we called the neutral curve (ci = 0).
As shown in Figure 2.10, Two examples of a thumb curves are sketched. Entire
disturbances are damped outside the thumb. The thumb diminishes at a large
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Figure 2.10: Neutral curves of the Orr-Sommerfeld equation
(White, 2006)

Reynolds number if the profile U(y) has no point of inflection. On the other hand,
the thumb curve keeps open at infinity if the profile U(y) has a point of inflection.

Recrit, at which the disturbances can be magnified, is the lowest Reynolds
number to which the thumb excels. Normally, the profile of inflection has a lower
Recrit and a larger thumb curve. The point of transition to turbulence intervenes at
about 10 to 20 times the distance xcrit further downstream in the boundary layer.

2.4 Governing Equations

2.4.1 Navier-Stokes Equation

The development of mathematical models began at the last of the 19th century after
the industrial revolution, despite the fact that fluid movement is an exploratory
subject. In the published article "Principia" by Sir Isaac Newton (1687), in which
dynamic action of fluids within invariable viscosity was studied, the original proper
definition of the viscous fluid motion was suggested (White, 2006).

Subsequently, Daniel Bernoulli (1738) and Leonhard Euler (1755) formulated
the inviscid stream formula, which is known as the Euler’s inviscid equations. While
Claude-Louis Navier (1827), Augustin-Louis Cauchy (1828), Siméon Denis Poisson
(1829) and Adhémar St. Venant (1843) had examined the mathematical model

22/79



A STUDY OF LAMINAR-TURBULENT TRANSITION ON TWO-DIMENSIONAL
SUCTION BOUNDARY LAYER

of fluid flow, the viscous (frictional) force had ignored however. In 1845, by in-
troducing Newtonian viscous terminology, Sir George Stokes had developed the
equation of motion for a viscosity-based stream, therefore taking the Navier-Stokes
equations to their final form, which has since been used to produce mathematical
solutions of fluid flow (White, 2006; Stokes, 1851).

Cases of thermofluid driven by regulating formulas are based on the conserva-
tion laws. The Navier-Stokes equations are the widely used mathematical model
to evaluate alterations during dynamic and/or thermal interactions on these prop-
erties. The equations are adjustable in terms of the case’s context and are demon-
strated on the basis of the principles of mass, momentum and energy conservation
(White, 2006):

• Conservation of Mass: Continuity Equation

• Conservation of Momentum: Momentum Equation of Newton’s Second Law

• Conservation of Energy: First Law of Thermodynamics or Energy Equation

2.4.2 Conservation of Mass

In compliance with physical laws, the mass in the control volumeăcan neither be
created nor destroyed. Conservation of mass, commonly known as the Continuity
Equation, notes that the variation in flow of mass between the inlet and outlet
portion is zero throughout the cycle (What are the Navier-Stokes Equations?, n.d.):

Dρ

Dt

+ ρ
(
∇ · V⃗

)
= 0 (2.10)

where ρ is density, V is the velocity and gradient operator ∇. The flow is assumed
to be incompressible flow. Hence, the Continuity Equation is simplified as below:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (2.11)

2.4.3 Conservation of Momentum

This relation describes the Newton’s Second Law of Motion in fluid motion (in-
compressible flow) which utters a balance between applied force and the resulting
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Figure 2.11: Notation for stresses in x component

acceleration of a particle of mass m:

F = ma (2.12)

In order to make the explanation easier to be understood, we will only analyze
all the total forces acting on the x component of an infinitesimally fluid, as depicted
in Figure 2.11.

The total forces acting on the x component are caused by gravity

fbody = mgx (2.13)

= ρdxdydzgx (2.14)

as well as pressure and viscosity

fsurface =τxx(x+ dx)dydz − τxx(x)dydz + τyx(y + dy)dxdz

− τyx(y)dxdz + τzx(z + dz)dxdy + τzx(z)dxdy
(2.15)
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The right hand side of the Newton’s equation will be

max = ρdxdydzax (2.16)

where
ax =

du

dt
(2.17)

Since u is the function of x, y, z, and t, chain rules should be applied.

ax =
∂u

∂t
+
∂u

∂x

dx

dt
+
∂u

∂y

dy

dt
+
∂u

∂z

dz

dt
(2.18)

where dx/dt = u, dy/dt = v, and dz/dt = w. Then,

ax =
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
(2.19)

Gathering all the known variables, relating the normal stress with the shear
stress, and performing some rearrangements, the Navier-Stokes equation becomes

ρgx −
∂p

∂x
+ µ

∂2u

∂x2
+ µ

∂2u

∂y2
+ µ

∂2u

∂z2
= ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
(2.20)

which consists of pressure gradient, shear friction, and momentum.

2.4.4 Orr-Sommerfeld Equation

For fluid dynamics, the formula Orr-Sommerfeld is an equation of eigenvalue that
defines the linear two-dimensional disruption modes to a viscous parallel stream.
The solution to the Navier-Stokes equation for a parallel, laminar flow can increase
the growth of instability if some circumstances on the flow are met, and the Orr-
Sommerfeld equation determines exactly what the situations for hydrodynamic
stability are. The formula was modeled after William McFadden Orr and Arnold
Sommerfeld who improved it at the beginning of the 20th century.
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Starting from the method of small disturbances, the base flow can be assumed
as

U = U(y)

V = 0

W = 0

(2.21)

and the fluctuation flow as follows:

uf = uf (x, y, t), vf = vf (x, y, t)

u = U + uf , v = V + vf , w = 0, p = P + pf
(2.22)

From the Navier-Stokes equations, we apply the continuity equation

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (2.23)

and momentum equation:
x-momentum

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂P

∂x
+ ν

[
∂2u

∂x2
+
∂2u

∂y2

]
(2.24)

y-momentum

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂P

∂y
+ ν

[
∂2v

∂x2
+
∂2v

∂y2

]
(2.25)

Substituting Eq. 2.21 and 2.22 into Eq. 2.23

∂(U + uf )

∂x
+
∂(V + vf )

∂y
= 0

∂U

∂x
+
∂V

∂y
+
∂uf

∂x
+
∂vf

∂y
= 0

(2.26)

Since (∂U/∂x) + (∂V /∂y) = 0, then

∂uf

∂x
+
∂vf

∂y
= 0 (2.27)
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By applying base and fluctuating flow, substituting Eq. 2.21 and 2.22 into Eq.
2.24 we derive

∂(U + uf )

∂t
+ (U + uf )

∂(U + uf )

∂x
+ (V + vf )

∂(U + uf )

∂y
=

−1

ρ

∂(P + pf )

∂x
+ ν

{
∂2(U + uf )

∂x2
+
∂2(U + uf )

∂y2

}
.

������������[
∂U

∂t
+ U

∂U

∂x
+ V

∂U

∂y

]
+[

∂uf

∂t
+ uf

∂U

∂x
+ U

∂uf

∂x
+ uf

∂uf

∂x
+ V

∂uf

∂y
+ vf

∂U

∂y
+ vf

∂uf

∂y

]
=

(((((((((((((((([
−1

ρ

∂P

∂x
+ ν

{
∂2U

∂x2
+
∂2U

∂y2

}]
+

[
−1

ρ

∂pf

∂x
+ ν

{
∂2uf

∂x2
+
∂2uf

∂y2

}]
.

(2.28)

Since (∂U/∂x) << (∂U/∂y), from base flow the V = 0, and by neglecting product
of the fluctuating terms, the fluctuation x-momentum equation hence:

∂uf

∂t
+

�
�
��

uf
∂U

∂x
+ U

∂uf

∂x
+

�
�
��

uf
∂uf

∂x
+

�
�
��

V
∂uf

∂y
+ vf

∂U

∂y
+

�
�

��
vf
∂uf

∂y
=

−1

ρ

∂pf

∂x
+ ν

{
∂2uf

∂x2
+
∂2uf

∂y2

}
.

∂uf

∂t
+ U

∂uf

∂x
+ vf

∂U

∂y
+

1

ρ

∂pf

∂x
= ν

[
∂2uf

∂x2
+
∂2uf

∂y2

]
.

(2.29)

Applying the same method for y-momentum, substituting Eq. 2.21 and 2.22
into Eq. 2.25 we get

∂(V + vf )

∂t
+ (U + uf )

∂(V + vf )

∂x
+ (V + vf )

∂(V + vf )

∂y
=

−1

ρ

∂(P + pf )

∂y
+ ν

{
∂2(V + vf )

∂x2
+
∂2(V + vf )

∂y2

}
.

������������[
∂V

∂t
+ U

∂V

∂x
+ V

∂V

∂y

]
+[

∂vf

∂t
+ uf

∂V

∂x
+ U

∂vf

∂x
+ uf

∂uf

∂x
+ V

∂vf

∂y
+ vf

∂V

∂y
+ vf

∂vf

∂y

]
=

(((((((((((((((([
−1

ρ

∂P

∂y
+ ν

{
∂2V

∂x2
+
∂2V

∂y2

}]
+

[
−1

ρ

∂pf

∂y
+ ν

{
∂2vf

∂x2
+
∂2vf

∂y2

}]
.

(2.30)
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From the base flow, V = 0, so (∂V /∂x) = 0 and (∂V /∂y) = 0. Also, by neglecting
product of the fluctuating terms the fluctuating y-momentum thus become

∂vf

∂t
+

�
�
��

uf
∂V

∂x
+ U

∂vf

∂x
+

�
�
��

uf
∂vf

∂x
+

�
�

��
V
∂vf

∂y
+

�
�

��
vf
∂V

∂y
+

�
�
��

vf
∂vf

∂y
=

−1

ρ

∂pf

∂y
+ ν

{
∂2vf

∂x2
+
∂2vf

∂y2

}
.

∂vf

∂t
+ U

∂vf

∂x
+

1

ρ

∂pf

∂x
= ν

[
∂2vf

∂x2
+
∂2vf

∂y2

]
.

(2.31)

In this method, the disturbances need to be modelled. The disturbances are
consisted of a quantity of discrete partial fluctuations by taking into account several
parameters as follows:

• Each of which propagating in x direction

• Perturbation is assumed to be 2D stream function

• Assuming any random 2D disturbance to be in Fourier Series expansion

• Each turbulence represents partial oscillations

By considering some parameters above, the model of the turbulence become

ψ(x, y, t) = ϕ(y)ei(αx−ωt) (2.32)

= ϕ(y)eiα(x−ct) (2.33)

where c = α/ω. The model of the disturbance in the fluctuating flow then

uf =
∂ψ

∂y
= ϕ′(y)ei(αx−ωt)

vf = −∂ψ
∂x

= −ϕ(y)ei(αx−ωt)(iα)

(2.34)
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After modelling the disturbance, we can substitute Eq. 2.34 into momentum
equation in Eq. 2.29 and 2.31

ϕ′(y)ei(αx−ωt)(−iω) + Uϕ′ei(αx−ωt)(iα) + (−iα)ϕei(αx−ωt)∂U

∂y
+

1

ρ

∂pf

∂x

= ν

[
∂2

∂x2
+

∂2

∂y2

] (
(−iα)ei(αx−ωt)

)
.

(−iα)ϕei(αx−ωt)(−iω + U(−iα)ϕei(αx−ωt)(iα) +
1

ρ

∂pf

∂y

= ν

[
∂2

∂x2
+

∂2

∂y2

] (
(−iα)ϕei(αx−ωt)

)
.

(2.35)

By rearrangements, expansions and differentiation, the final Orr-Sommerfeld equa-
tion is

(U − c)
(
ϕ′′ − α2ϕ

)
− U ′′ +

iν

α

[
ϕ′′′′ − 2α2ϕ′′ + α4ϕ

]
= 0 (2.36)

Using the following non-dimensional parameters

Ū =
U

Ue

η =
y

δ

ϕ̄ =
ϕ

Ueδ

c̄ =
c

Ue

αδ = αδ

Reδ =
Ueδ

ν

(2.37)

The non-dimensionalized Orr-Sommerfeld equation become

(
Ū − c̄

) (
ϕ̄′′ − α2

δ ϕ̄
)
− Ū ′′ϕ̄+

i

αδReδ

(
ϕ̄′′′′ − 2α2

δ ϕ̄
′′ + α2

δ ϕ̄
)
= 0 (2.38)

2.5 Spectral Collocation Methods

Spectral collocation methods are applied to solve any kinds of ordinary and par-
tial differential equations (ODEs and PDEs) which contained in problems of fluid
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mechanics, vibrations, quantum mechanics, linear and non-linear waves, complex
analysis, and other subjects. Spectral methods are one of the three major PDE
numerical solution developments which in successive decades have become their
own: finite difference methods (1950s), finite element methods (1960s), and spec-
tral methods (1970s).

Some of the key ideas that govern the spectral methods are interpolation and
expansion, as well as specific algorithmic developments. To achieve high accuracy
in solving an ODE or PDE on a basic domain, the spectral methods are ordinarily
the foremost tool if the information regarding the problem are smooth. They can
provide accuracy up to ten digits where finite element or finite difference method
would produce two or three digits of accuracy (Trefethen, 2000).

2.5.1 Smoothness and Spectral Accuracy

Methods of spectral and finite elements have a strong relationship and are based
on the similar concepts. The primary difference between them is that spectral
approaches utilize non-null base functions over the whole domain and non-null
base functions on limited subdomains using finite element methods. Alternatively
stated, spectral methods take a global approach whereas finite element methods
apply a local approach (Canuto, 2007).

Partly for that basis, spectral methods have outstanding errors with a smooth
solution having the so-called exponential convergence. The common convergence
rate is O(N−m) for every m for functions that are smooth and O(cN) (0 < c < 1) for
functions that are analytic. Aforementioned behavior is called spectral accuracy.

The Fourier transform will be utilized to obtain the relationships in an argu-
ment consisting of two measurements. First, there is a quick decaying transform in
a smooth function. This is due toăa smooth system that evolvesăgradually. Since
large wave numbers equate to quickly oscillatingăwaves, its function does not pro-
duce any energy at high numbers of waves. Furthermore, if the Fourier function
conversion easily decays, then the discretionary errors are low. The reason for
these errors is because high waven numbers are alienated to low waven numbers
(Trefethen, 2000).
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2.5.2 Eigenvalues and Fourth-Order Problems

Spectral methods constitute formidable tools for the calculation of eigenvalues
ofădifferential and integralăoperatorsăand their generalization for highly non-symmetrical
topics (pseudospectra). The calculation of critical Reynolds number R = 5772.22
by Orszag (Orszag, 1971) for eigenvalue unsteadiness of plane Poiseuille flow en-
sured an obvious confirmation to demonstrate spectral methods to be a substantial
equipment in scientific computing due to its high accuracy.

An instance of the fourth-order spectral computation is the Orr-Sommerfeld
equation from the field of hydrodynamic stability. The solution of Navier-Stokes
equation is a laminar flow which is comprised of a smooth horizontal movement
with a parabola speed velocity when the flow is undertaken by a constant pressure
gradient between two infinite flat plates at Reynolds number (non-dimensionalized
velocity) Re. The solution can be obtained by applying an uncomplicated technique
including polynomials related by p(x) = (1− x2)q(x) (Trefethen, 2000).

For Re >> 1000, the flow is invariably turbulence. The laminar flow must be
unstable for high Re in small disturbances. The problem of the eigenvalue of Orr-
Sommerfeld equation arises from a linearized stability examination on the basis of
a perturbation with the longitudinal framework eix and a development at level eλt:

Re−1(uxxxx − 2uxx + u)− 2iu− i(1− x2)(uxx − u) = λ(uxx − u) (2.39)

with boundary conditions u(±1) = ux(±1) = 0. The values of R need to be deter-
mined so that the real part of the eigenvalues λ are positive to analyze instability.
By discretization, the generalized (N − 1)× (N − 1) eigenvalue problem Av = λBv

is acquired, where

A = Re−1(D4 − 2D2 + I)− 2iI − idiag(1− xj
2)(D2 − I), (2.40)

B = D2 − I. (2.41)

The discretized version of the equation becomes a generalized eigenvalue problem:

A · U = λB · U (2.42)

TheD2 is second derivative matrix D̃2
N stating the boundary conditions u(±1) =
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0, and the fourth derivative matrix denoted by D4 stating the clamped boundary
conditions u(±1) = ux(±1) = 0. The resulting eigenvalues spectrally converge to
the Y form familiar to everyone involved in hydrodynamic stability. As intended,
the rightest value is almost on the imaginary axis (Trefethen, 2000).
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CHAPTER 3
RESEARCH METHODOLOGY

3.1 Introduction to the Method

3.1.1 Spectral Methods

Partial differential equations (PDEs), ordinary differential equations (ODEs) and
eigenvalue problems are typical cases that can be solved by spectral methods. These
method benefits a sum of certain basis functions as the solution of the differential
equation. The PDEs then are substituted by the functions which yield to a system
of ODEs in the coefficients. Then, converts the eigenvalue problems for ODEs to
matrix eigenvalue problems.

Spectral methods are implemented and accomplished normally by either of
these three approaches, collocation, Galerkin or a Tau approach. The collocation
approach selects finite-dimensional space of piecewise polynomial interpolants up
to certain degree and a variety of collocation points in the domain. In the context of
differential equations, these techniques are defined as spectral collocation methods.

3.1.2 Eigenvalue and Generalized Eigenvalue Problems

In this thesis, spectral collocation methods will be applied to solve ordinary differ-
ential equations (ODEs) for eigenvalue problems by arranging the equation matrices
into a generalized eigenvalue problems.

In respect of eigenvalue problems, its eigenvectors reflect the directions of the
data distribution or variation and the magnitude of its variation in such locations
is its corresponding eigenvalues.

While for the generalized eigenvalue problems, the paths are influenced by an-
other matrix. If the other matrix is the identity matrix, this effect will be cancelled

33/79



A STUDY OF LAMINAR-TURBULENT TRANSITION ON TWO-DIMENSIONAL
SUCTION BOUNDARY LAYER

and we will have the eigenvalue problem taking the directions of the full distribu-
tion.

Below is the matrix form of generalized eigenvalue problems, with which we can
solve the Orr-Sommerfeld equations

A · ϕ = λB · ϕ (3.1)

where A and B are a pair-symmetrical matrix, with λ and ϕ are the eigenvalues
and eigenvectors, respectively.

3.1.3 Spectral Collocation Methods of Asymptotic Suction
Boundary Layer

Recall the non-dimensionalized Orr-Sommerfeld equation (Eq. 2.38) from Chapter
2 (

Ū − c̄
) (
ϕ̄′′ − α2

δ ϕ̄
)
− Ū ′′ϕ̄+

i

αδReδ

(
ϕ̄′′′′ − 2α2

δ ϕ̄
′′ + α2

δ ϕ̄
)
= 0

For simplicity, we may remove several notations in such a way so that the equation
becomes

(U − c)
(
ϕ′′ − α2ϕ

)
− U ′′ϕ+

i

αRe

(
ϕ′′′′ − 2α2ϕ′′ + α2ϕ

)
= 0 (3.2)

The general form of the basic flow for this thesis will be

u = U
(
1− e

−yυ
ν

)
(3.3)

where υ is a suction velocity and ν is dynamic viscosity. In this case, the value of
U = 1 and (υ/ν) = 1. The basic flow then become u = 1− e−y. Thus, the second
derivative of u is u′′ = −e−y. The u and u′′ will be substituted to the U and U ′′

in the equation. After some substitutions and rearrangements, the equation turns
into

Re−1
(
ϕ′′′′ − 2αϕ′′ + α4ϕ

)
− e−yiαϕ− iα(1− e−y)(ϕ2 − α2ϕ) = λ(ϕ′′ − α2ϕ) (3.4)

where ω = αc and λ = −iω.

34/79



A STUDY OF LAMINAR-TURBULENT TRANSITION ON TWO-DIMENSIONAL
SUCTION BOUNDARY LAYER

The fundamental concept is to define a new function q(y) to handle the 4th

order operator:
ϕ(y) =

(
1− e−y

)
q(y) (3.5)

Note that the new function q(y) complies the boundary conditions. Then, the 4th

order operator in terms of q(y) becomes:

d
4ϕ

dy4
=

(
1− e−y

) d4q

dy4
+ 4e−yd

3q

dy3
− 6e−yd

2q

dy2
+ 4e−ydq

dy
− e−yq ≡ D̃4q (3.6)

In this method, every differential operator must be discretized at the points of
collocation to form matrices Di

Diag
(
1− e−y

)
D4 − 4e−yDiag(y)D3 − 6e−yD2 + 4e−yD1 − e−y ≡ D̃4 ⇒ D̃4

d
1

dy1
≡ D1 ⇒ D1

d
2

dy2
≡ D2 ⇒ D2

d
3

dy3
≡ D3 ⇒ D3

d
4

dy4
≡ D4 ⇒ D4

(3.7)

The notation Diag (1− e−y) is a diagonal matrix with elements 1 − e−yi along its
diagonal.

The discretized form of the unknown q(y) at the points of collocation creates
the vector Q which is referred to the discretized unknown ϕi by:

Qi =
ϕi

(1− e−yi)
(3.8)

so that
D̃4Q = D̃4Sϕ (3.9)

where
S = Diag

(
1

1− e−yi

)
(3.10)
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Long story short, the discretized form of the Orr-Sommerfeld equation turns
into

{
Re−1

(
D̃4S − 2α2D2 + Iα4

)
− e−yiαI − iαDiag

(
1− e−y

) (
D2 − Iα2

)}
ϕ =

λ
(
D2 − Iα2

)
ϕ (3.11)

where I = Identity matrix and Diag = Diagonal matrix. With respect to the
operators, the equation can be stated more compactly as

AAA =
{
Re−1

(
D̃4S − 2α2D2 + Iα4

)
− e−yiαI − iαDiag

(
1− e−y

) (
D2 − Iα2

)}
BBB =

(
D2 − Iα2

)
(3.12)

The discretized form of the Orr-Sommerfeld equation yields to a generalized eigen-
value problem:

AAA · ϕϕϕ = λBBB · ϕϕϕ (3.13)

where λ = −iω. Since this form is already established explicitly for the case,
the next step is to solve this form by a specific package from the computing tools.
The explanation is contained in the next section.

3.2 Computing Tools

3.2.1 Chebfun Codes for MATLAB

Chebfun is an open-source software with an embedded functions for numerical com-
puting. It is a high-quality, well-tested and mature numerical library in solving
differential equations using spectral method. By applying a piecewise polynomial
interpolation with Chebyshev Series as its mathematical initial interest, it has vig-
orous techniques to handle linear and non-linear differential and integral operators.
Still further, it can deal with partial differential equations with the involvement of
one space and one time variable. It would be an enormous effort to re-implement
chebfun from MATLAB in Python, hence MATLAB engine for Python is used.
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Regarding Chebops

On chebfuns, there is an operator which epitomizes an integral or differential oper-
ator, it is called chebop. To find the eigenvalues that we are willing to solve, eigs
and expm is applicable to the operators. In this case, we will use only the eigs.
The aforementioned syntax will be explained in the next section.

Similar to the chebfuns, chebops begin with an approximation of polynomial
interpolants. It is also determined as spectral collocation methods, particularly
for differential equations. In order to attain maximum feasible accuracy through
double precision arithmetic, the discretizations will be selected automatically.

3.2.2 MATLAB and Python

It has been mentioned in the previous title section that chebfun codes is, currently,
only available for MATLAB programming language. MATLAB is a multi-paradigm
numerical computing environment developed exclusively by Mathworks. It is a
high-level programming and very powerful for mathematical programming.

MATLAB is categorized as one of the oldest programming languages. Thus, var-
ious communities regarding the MATLAB codes have been provided and spreaded
widely. MATLAB has its own concept with a whole package included, as well as
the IDE. Below is the advantages and disadvantages of using MATLAB.

MATLAB advantages:

1. Availability of numerous packages with a compact script

2. Provides multiple threaded support and community

3. Packages for any types of mathematics and trading for the commercial level

4. According to its long experience, it is well tested and supported

MATLAB disadvantages:

1. A proprietary and closed-source software

2. Expensive, only people with sufficient funds to buy the license who can use
it
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3. It does not perform well for iterative loops

4. The capability of developing stand-alone applications if poor

On the other hand, Python is rather general-purpose programming language,
with which we can develop fully functional apps or any software tools. Besides
being a high-level programming, it also become the most straightforward syntax
which we are able to translate easily our ideas into the codes. This free high-level
programming language is being massively adapted, supported by its embedded and
third party IDEs. To analyze other benefits of using Python, we should see the
advantages and disadvantages of Python as well, explained as follows.

Python advantages:

1. It is a free, cross-platform and open-source software which we will get the
libraries, lists, and dictionaries after we download and install it.

2. Reliable to work with other languages to connect, such as R, C++, and
others.

3. Fastest iterative loops in the category of general-purpose programming lan-
guages

4. Python has a beautiful and simple programming language

5. Python is very structured through its indentation rule which leads to an ease
to be followed

Python disadvantages:

1. Trading packages are still juvenile

2. Since it is still categorized as a new programming language, community is
smaller compared to MATLAB

3. Packages are not compatible with each other

Based on the explanation and comparison above, we have come to a conclusion
that we will use both programming language. The reasons to this are the existing
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Python Object

Python Object

MATLAB Object
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Figure 3.1: MATLAB Engine API for Python work process

library to solve this spectral collocation method is available in MATLAB. However,
since we will perform various loops for the case then we should also use Python to
perform a better calculation.

3.2.3 MATLAB Engine API for Python

There is a package with which Python can call MATLAB as a computational
engine, it is called MATLAB Engine API for Python. The step-by-step process is
illustrated in Figure 3.1. The initial step is to bring the python object from Python
into the Engine API so that it can be translated into a matlab object. Now, the
object is already in MATLAB programming language as a MATLAB function.

MATLAB solves the ordinary differential equations of the object with the spec-
tral collocation method in which the function is already existed. After the equations
are solved, the results and data obtained from the calculation will be transferred
back to Python through Engine API to be processed and analyzed.

3.3 Variables

To execute the program, several variables should be considered as follows:

1. Reynolds number (Re)

• Re = 1 × 103 − 1.5 × 104, 150 step

• Re = 1.5 × 104 − 1 × 107, 985 step

• Re = 1 × 107 − 1 × 108, 90 step
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2. Wavenumber/alpha (α)

• α = 0.01 − 0.3, 0.01 step

3. Number of eigenvalues (λ), which represents the resolution of the spectral
method

• n(λ) = 30

4. Boundary conditions

• ϕ(0) = ϕ′(0) = 0

• ϕ(∞) = ϕ′(∞) = 0

3.4 Prediction of Temporal Stability

To analyze this event, the disturbances have two distinct functional approaches.
The numerical solution to the equation is either spatial or temporal growth of
disturbances. The functional shape for temporal stability is as follows:

Temporal growth: f(Re, α, cr, ci) = 0 (3.14a)

where the subscripts r and i denotes real and imaginary, respectively. In addition to
the equation above, temporal growth requires real α and complex c, while spatial
growth should have complex α and real αc. If λreal = 0 for temporal growth,
neutral stability is occured. If λreal is negative, then it is stable. But, if λreal is
positive, it is an unstable state.

In this study, temporal growth of disturbances will be discussed. A proper
boundary layer conditions for the Orr-Sommerfeld equation is also considered,
which is

ϕ(0) = ϕ′(0) = 0 (3.15a)

ϕ(∞) = ϕ′(∞) = 0. (3.15b)

We will be discussing about an eigenvalue problem due to the homogeneity of the
equation and its corresponding boundary conditions.
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CHAPTER 4
RESULTS AND DISCUSSIONS

4.1 Computation Variables

On this study, two independent variables from the Orr-Sommerfeld Equation are
being varied. As mentioned before, Reynolds number (Re) and wavenumber (α)
are the variables that affects the stability of the flow, and into some extent, the
stability growth inside the boundary layer.

As mentioned in Chapter 3, Reynolds number use three variation steps to be
analyzed. The first set is ranging from 1 × 103 to 1.5 × 104, generating 150 points.
By generating 985 points, the second set has a range of Reynolds number from
1.5 × 104 to 1 × 107. The last set is ranging from 1 × 107 to 1 × 108 with a creation
of 90 points. For the second variable, the wavenumber α is linearly spaced from
0.01 to 0.3 with 0.01 step.

For the computation, the range of Re is not equally spaced; some range require
high resolution some dont. Hence the computing cost can be unnecessarily high if
high resolution computation is done for all range. The higher the value of Re, the
more time it requires for the code to calculate at that Re value. For each α, the
computation takes approximately 12 hours to execute for the entire range of Re.
The calculations were performed for 30 values of λ, hence the total computational
time was ≥ 360h.

Additionally, execution time above is valid for a computer with specifications
as follows:

• Operating System
Windows 10 Pro 64-bit (10.0, Build 18362)

• Processor
Intel(R) Core (TM) i7-6700 CPU @3.40 GHz (8 CPUs)
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• Memory
16 GB RAM

• VGA
NVIDIA GeForce GTX 1070 8 GB

4.2 Data Plot for Several Wavenumbers

On this part, the results in terms of real-maximum eigenvalues (λrmax) will be
analyzed and discussed. The data plot of λrmax is achieved for wavenumber α =

0.01− 0.3 with 0.01 step and Reynolds number Re = 1 × 103 − 1 × 108 with steps
as previously explained.

Each data plot will not be addressed completely one by one since, for several
data plots, they are making almost the same trends. Consequently, there are only
three data plots to be highlighted for discussion. Furthermore, complete plots will
also be provided to have a wider observation for the entire wavenumber range.

4.2.1 Data Plot for Wavenumber 0.01

First plot for λrmax at α = 0.01 with an aforementioned range of Re will be dis-
cussed in this subsection, as illustrated in Figure 4.1. In general terms, this case
demonstrates an exponential shifting from stable to unstable since the value of
λrmax starts to have a positive value at about Re = 1.5 × 107 until the last value of
Re at specified range. For some eigenvalues data for α = 0.01, see appendix B.1.

The whole curve is obviously having an exponential pattern. Despite that,
the first several points of λrmax do not satisfy the pattern. It is possible that
this issue is appeared due to the mathematical model of the initial equation itself.
However, this disordered λrmax points at the lower Re eliminate with the increasing
α. These chaotic points will completely vanished at α = 0.24, means that all the
points construct a pattern.

At the beginning phase of the exponential curve, which starts at Re = 25 147
with λrmax = −0.000 907 88, the points are loose between the points. As the Re
is getting higher, the points are getting densed, means that the change in λrmax is
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Figure 4.1: Data plot Reynolds number vs. Real Lambda for
α = 0.01, Recrit = 1.6 × 107

not as big as it is at the low Re. Although λrmax takes a wider gap again before
the transition, the increase of λrmax is gradually lesser.

4.2.2 Data Plot for Wavenumber 0.15

An examination on this second case will be done for α = 0.15 with the same
range of Re. The data plot can be seen in Figure 4.2. Broadly speaking, the
trend of the graph is increasing semi-parabolically and then slightly exponential.
Within this range, the flow experiences an unstable state between Re = 55 589 and
Re = 390 452. Following this, the condition returns to the stable state (λrmax is
negative).

At the stage of semi-parabolic curve, there is a big jump of λrmax value after
a point at Re = 1.5 × 104 with a value of λrmax = −0.001 910 80 to a point at
Re = 25 147 with a value of λrmax = −0.000 843 73. This is happened because
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Figure 4.2: Data plot Reynolds number vs. Real Lambda for
α = 0.15, Recrit = 45 442

it is the point where the second range of Re with a different step starts. Some
unordered points are still apparent on the low Re. Nevertheless, they are getting
far less than that at α = 0.01.

Before the slight exponential increase, λrmax performs a decrease from the maxi-
mum point at Re = 146 916 with λrmax = 0.000 422 68 to a point at Re = 2 967 881
with λrmax = −0.001 282 48. In spite of the fact that the second stage are in-
creasing, it is less likely to go back to an unstable state considering that the delta
between the points are getting lower.

4.2.3 Data Plot for Wavenumber 0.24

In this part, a data with alpha α = 0.24 will be examined with the same range of
Re. In general, the whole trend shows almost the same plot with the previous one,
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Figure 4.3: Data plot Reynolds number vs. Real Lambda for
α = 0.24, no Recrit

as shown in Figure 4.3. In this plot, the instability status indicates a stable state
for the whole range.

Starting from this α, the maximum point will be a local maximum since at the
middle of the second stage, the value of λrmax is larger than the local maximum
value. In this case, the local maximum is at Re = 45 442 with a value of λrmax =

−0.000 978 22. Another point to be highlighted is that the whole range is a fully
stable state.

After the local maximum, the λrmax drops until Re = 694 873 with a value
of λrmax = −0.002 689 00. Then, it increases exponentially until the last value of
Reynolds number Re = 1 × 108 with a value of λrmax = −0.000 922 94. Another
point to be addressed is that there is no more unordered point at the lower Re, as
previously mentioned.
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4.2.4 Data Plot for All Wavenumbers

This section will be discussing the Figure 4.4 which plots the entire range of α from
0.01 to 0.30. Each α is distinguished by a pair of symbol and color as listed in the
legend of the Figure. Overall, the plots produce a rapid-exponential increase at
the beginning, and then increase progressively after a short decrease.

As discussed before, the plots show a full stable state from α = 0.20 to α =

−0.30 while the condition for the α less than 0.20 is stable at first, unstable for a
short range of Re, and then recovers back to the stable state. Scattered points for
α less than 0.24 at low Reynolds number are observable as well. In terms of growth,
the highest growth occures at 198 155 < Re < 500 566 for the wavenumbers from
α = 0.10 to α = −0.12

It is also clear from the graph that the α affects the maximum/local maximum
value quite significant. The higher the α, the lower the maximum/local maximum
value. The local maximum of α = 0.30, denoted by purple-colored "+" sign, is the
lowest value, followed by the next. However, the difference of α from 0.13 to the
lowest is very unsignificant.

4.3 Stability Analysis at Complex Plane

This section will be examining the growth of eigenvalues at a specific pair of Re
and α on a complex plane (λreal at x − axis and λimag at y − axis). The stable
flow will be denoted by a negative value of λreal while unstable condition will be
indicated by a positive value of λreal. For comparison, there will be two pairs of
Re and α that will be investigated.

4.3.1 Stable State

For the first plot, the eigenvalues at Re = 8000 and α = 0.30 are plotted at
the complex plane, as shown in Figure 4.5. The value of λrmax = −0.004 581 98,
it means that this condition maintains a stable state as there is no λreal with a
positive sign. Or, it can be said that all the λreal lie in the left-half plane.
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Figure 4.4: Data plot Reynolds number vs. Real Lambda for all
wavenumbers
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Figure 4.5: Eigenvalues for Re = 8000.0 and α = 0.30 at a com-
plex plane shows a stable state
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Figure 4.6: Eigenvalues for Re = 216 000 and α = 0.12 at a
complex plane shows an unstable state

4.3.2 Unstable Condition

The next plot of eigenvalues at Re = 216 000 and α = 0.12 will be examined, as
demonstrated in Figure 4.6. Unstable condition occurs if any of the λreal are in
the right-half plane. As can be seen from the graph, there is already one point
that crosses into the right-half plane. It is the point of λrmax itself with a value of
λrmax = 0.000 558 08. Thus, this condition experiences an unstable state.

4.4 The Contour of Stability

4.4.1 Contour Plot of The Data

This part will discuss a contour of λrmax in terms of the stability of the flow, as
exemplified in Figure 4.7. Two variables impacts the λrmax, namely Re and α. The
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Figure 4.7: The contour plot of neutral stability for a viscous flow

Re varies between 1 × 103 and 1 × 108, while α varies between 0.01 and 0.30 with
a linear space of 0.01. On this study, only a viscous flow that is being analyzed.

The thumb-shaped curve is where the unstable region takes place since all the
λrmax are positive. Inside the thumb-shaped curve, the color denotes the value of
the λrmax. The more red the color is, the higher the λrmax are. Outside that region,
it is stable, means that the λrmax are negative (the darkest blue region).

Another point to be highlighted is that there is a line which separates the stable
and unstable region where the value of λrmax are exactly 0. That line is the so-called
a neutral curve. With regard to growth of the stability, all disturbances outside
the thumb-shaped curve are damped. Recrit is located in which where the thumb-
shaped curve protrudes (marked by red line), which occures at approximately Re =
48 000.

According to the Rayleigh criterion, if the profile U(y) has no point of inflection,
the thumb-shaped curve vanishes at a large Reynolds number. This contour seems
to have no point of inflection if the range of Re is being extended. In the opposite,
if the profile U(y) has a point of inflection, the contour stays open at infinity
Reynolds number (unstable until infinity).
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FIQURE 2. The curves of neutral stability for the asymptotic suction profile. The solid 
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Figure 4.8: The curve of neutral stability for asymptotic suction
profile from Hughes and Reid (Hughes & Reid, 1965)

4.4.2 Comparison

The results above will be compared with the investigation conducted by Hughes
and Reid (Hughes & Reid, 1965). The curve of neutral stability conducted by
Hughes and Reid is shown in Figure 4.8. Two thumb-shaped curves are plotted
here, the dashed line is for an inviscid flow while the solid line is for a viscous flow.
To compare with the results in this study, only the viscous flow curve that will be
analyzed.

The thumb-shaped curve for the viscous flow starts at Reynolds number Re =
6.4 × 104 and limited at Re = 1.25 × 1011. The wavenumber is ranging from
5 × 10−3 to 2 × 10−1. Same with the preceeding results, the condition outside
the thumb curve is a stable state since the λrmax are negative. On the other hand,
λrmax inside the thumb curve are positive, thus unstable state takes place.

It is also obvious that the Recrit happens at approximately Re = 50 000. In
terms of point inflection, this viscous-affected flow seems to have no point of inflec-
tion as well, thus will disappears at high Reynolds number. In addition, the line
of the curve denoted the neutral curve where λrmax are 0.
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CHAPTER 5
SUMMARY, CONCLUSION,

RECOMMENDATION

5.1 Conclusions

Taking everything into account, the investigation on transition of a controlled suc-
tion boundary layer in temporal stability using linear stability theory has been
done.

From the contour plot of Re vs α, it may be concluded that the Recrit brings
forth at approximately Re = 48 000, which is the value of Re where the thumb-
shaped curve protrudes. In terms of stability, the darkest blue region denotes a
stable condition while the others implies an unstable state. As this thumb-shaped
curve seems to has no point of inflection, this curve closes at a large Reynolds
number.

This determined range of Reynolds number and wavenumber as variables in
the Orr-Sommerfeld Equation affects the stability of this suction flow as the base
flow, on a two-dimensional streamline body, or, a flat plate to be specific. Yet,
this range of Reynolds number and wavenumber still may not be able to conclude
clearly regarding the transition of the flow from laminar to turbulent flow.

In terms of the execution cost, gathering the entire data require an extraor-
dinarily high cost and time. Throughout the whole 30 wavenumbers, it takes
approximately 12 hours to obtain the data for each wavenumber. This matter is
as a consequence of high resolution of eigenvalues that are being acquired.

In the case of Reynolds number that is increasing within the specified range, it
leads to a rapid-parabolic increase and, after a short parabolic decrease, a slight
exponential increase of eigenvalues happens. The condition begins to endure a fully
stable state when the wavenumber is α > 0.18 for all Reynolds numbers.
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With respect to transition, the flow performs a recovery to a laminar flow as the
delta of the eigenvalues are eventually decreasing for the whole flow at wavenumbers
in range.

5.2 Remarks for the Future Work

For future work and development, it is recommended to analyze the spatial growth
of the flow as this study only investigate the temporal growth. Also, applying
other variations of base flow to study and investigate the effect to transition is also
expected.

A higher resolution could be done in the future research to have a more com-
prehensive analysis and comparison with other studies. By this wider range of
aforementioned variables, a more complete data to analyze the stability might be
achieved. Moreover, an analysis in relation to the transition might be more accu-
rate.

a higher specification of the machine could be applied to reduce the time con-
sumption cost of the calculation. By this evaluation, it might increase the resolution
of the eigenvalues as well considering the improved capability of the machine. Be
that as it may, the cost to provide such machine might be a point to consider.
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APPENDIX A
MATLAB AND PYTHON CODES

A.1 Generalized Eigenvalue Problems (MATLAB)

1 % Function has been edited to check the reciprocal condition of the matrix
2 function e = ose_chebfun(Re_, alph_)
3 Re = Re_;
4 alph = alph_;
5 A = chebop(0, 50);
6 A.op = @(x,u) (diff(u,4)-2*alph^2*diff(u,2)+alph^4*u)/Re - ...
7 exp(-x)*1i*alph*u - 1i*alph*(1-exp(-x)).*(diff(u,2)-alph^2*u);
8 B = chebop(0, 50);
9 B.op = @(x,u) (diff(u,2) - u*alph^2);

10 A.lbc = [0; 0];
11 A.rbc = [0; 0];
12 e = eigs(A, B, 'sm');
13 end

A.2 Wavenumber Data (Python)

1 import numpy as np
2 import matlab.engine
3

4 # Initial values
5 # alph = 0.22 # Initial Alpha
6 # Re = 0.05e6 # Initial Reynolds number
7

8 # alphss = np.linspace(0.22, 0.3, 5).round(2)
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9 # Ress = np.linspace(0.05e6, 2e6, 196)
10

11 Ress1 = np.linspace(1e3, 1.5e4, 150)
12 Ress2 = np.linspace(1.5e4, 1e7, 985)
13 Ress3 = np.linspace(1e7, 1e8, 90)
14

15 Ress = np.concatenate((Ress1, Ress2, Ress3))
16 #alphss = np.linspace(0.25, 0.3, 30)
17

18 alphss = [0.25, 0.26, 0.27, 0.28, 0.29, 0.3]
19

20

21 Re_steps = np.arange(Ress.shape[0])
22

23 # Starting the Matlab Engine
24 eng = matlab.engine.start_matlab()
25

26 for alph in alphss:
27 Res = []
28 alphs = []
29 lambda_rmaxs = []
30 for Re_step in Re_steps:
31 Re = Ress[Re_step]
32 status = (
33 "Re Step ="
34 + str(Re_step)
35 + " :: "
36 + "Re="
37 + str(Re)
38 + " and alph="
39 + str(alph)
40 )
41 print(status)
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42 lambdas = np.array(
43 eng.ose_chebfun(float(Re), float(alph))
44 ) # Processing the data of eigenvalues
45 lambda_rmax_idx = np.argmax(np.real(lambdas)) # find index of lambda_rmax
46 lambda_rmax = lambdas[lambda_rmax_idx]
47 print(np.real(lambda_rmax))
48 Res = np.append(Res, Re)
49 alphs = np.append(alphs, alph)
50 lambda_rmaxs = np.append(lambda_rmaxs, lambda_rmax)
51 alph_str = str("{:.3f}".format(alph))
52 fname = "ose_re_lambda_rmax_alp_" + alph_str + ".txt"
53 np.savetxt(
54 fname,
55 np.transpose([Res, alphs, np.real(lambda_rmaxs), np.imag(lambda_rmaxs)]),
56 fmt="%.1f %.5f %.8f %.8f",
57 delimiter="",
58 header="Re Alpha Lambda_Re Lambda_Imag",
59 )

A.3 Plot Each Wavenumber (Python)

1 import os
2 import numpy as np
3 import matplotlib.pyplot as plt
4 import matplotlib
5 matplotlib.rcParams["text.usetex"] = True
6

7 # folder to be processed
8 folder = "Computation_Results/"
9 files = os.listdir(folder)

10 files.sort()
11

12 # plots folder
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13 save_dir = "plots/"
14

15 # Plot for each lambda
16 for file in files:
17 alph_str = file[23:27]
18 fname = folder + file
19 data = np.genfromtxt(fname, skip_header=1)
20 Res = data[:, 0]**(1 / 3)
21 Lambda_Res = data[:, 2]
22 fig, ax = plt.subplots(figsize=(9, 9))
23 ax.plot(Res, Lambda_Res, 'o', label=alph_str)
24 ax.set_xlabel(r"$Re^{\frac{1}{3}}$", fontsize=15)
25 ax.set_ylabel(r"$Max(\lambda_{real})$", fontsize=15)
26 ax.ticklabel_format(axis="y", style="sci", scilimits=(-2, 3))
27 ax.grid("both")
28 fsavename = "Lambda_Real_VS_RealLambda_Re=" + alph_str + ".pdf"
29 plt.savefig(save_dir + fsavename, dpi=600)
30 plt.show()

A.4 Plot Each Wavenumber (Python)

1 import os
2 import numpy as np
3 import matplotlib.pyplot as plt
4 import matplotlib
5 matplotlib.rcParams["text.usetex"] = True
6

7 # folder to be processed
8 folder = "Computation_Results/"
9 files = os.listdir(folder)

10 files.sort()
11

12 # plots folder
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13 save_dir = "plots/"
14

15 markers = [
16 'bo',
17 'go',
18 'ro',
19 'co',
20 'mo',
21 'yo',
22 'ko',
23 'wo',
24 'b*',
25 'g*',
26 'r*',
27 'c*',
28 'm*',
29 'y*',
30 'k*',
31 'w*',
32 'bx',
33 'gx',
34 'rx',
35 'cx',
36 'mx',
37 'yx',
38 'kx',
39 'wx',
40 'b+',
41 'g+',
42 'r+',
43 'c+',
44 'm+',
45 'y+',
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46 'k+',
47 'w+',
48 ]
49

50 fig, ax = plt.subplots(figsize=(9, 9))
51

52 n = 0
53 # Plot for each lambda
54 for file in files:
55 alph_str = file[23:27]
56 fname = folder + file
57 data = np.genfromtxt(fname, skip_header=1)
58 Res = data[:, 0]**(1 / 3)
59 Lambda_Res = data[:, 2]
60 ax.plot(Res, Lambda_Res, markers[n], markersize=3, label=alph_str)
61 n += 1
62 ax.set_xlabel(r"$Re^{\frac{1}{3}}$", fontsize=15)
63 ax.set_ylabel(r"$Max(\lambda_{real})$", fontsize=15)
64 ax.ticklabel_format(axis="y", style="sci", scilimits=(-2, 3))
65 ax.grid("both")
66 leg = plt.legend(loc='best',
67 ncol=5,
68 mode="expand",
69 shadow=True,
70 fancybox=True,
71 title=r"$\alpha$")
72 leg.get_frame().set_alpha(0.5)
73 plt.savefig(save_dir + "Lambda_Real_VS_Re_All_Lambda.pdf", dpi=600)
74 plt.show()
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APPENDIX B
EIGENVALUES DATA

B.1 Alpha = 0.01

# Re Alpha Lambda_Re Lambda_Imag
1000.0 0.01000 -0.00045487 -0.00996997
1094.0 0.01000 -0.00041738 -0.00997242
1187.9 0.01000 -0.00045974 -0.00996982
1281.9 0.01000 -0.00042739 -0.00997191
1375.8 0.01000 -0.00047772 -0.00996860
1469.8 0.01000 -0.00051968 -0.00996603
1563.8 0.01000 -0.00048970 -0.00996795
1657.7 0.01000 -0.00053877 -0.00996473
1751.7 0.01000 -0.00051103 -0.00996650
1845.6 0.01000 -0.00048607 -0.00996809
1939.6 0.01000 -0.00052629 -0.00996561
2033.6 0.01000 -0.00050296 -0.00996710
2127.5 0.01000 -0.00054916 -0.00996407
2221.5 0.01000 -0.00052688 -0.00996550
2315.4 0.01000 -0.00050638 -0.00996681
2409.4 0.01000 -0.00054500 -0.00996442
2503.4 0.01000 -0.00052538 -0.00996567
2597.3 0.01000 -0.00050715 -0.00996684
2691.3 0.01000 -0.00055031 -0.00996402
2785.2 0.01000 -0.00053250 -0.00996516
2879.2 0.01000 -0.00051583 -0.00996623
2973.2 0.01000 -0.00055254 -0.00996396
3067.1 0.01000 -0.00053630 -0.00996500
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3161.1 0.01000 -0.00052101 -0.00996598
3255.0 0.01000 -0.00056185 -0.00996332
3349.0 0.01000 -0.00054673 -0.00996429
3443.0 0.01000 -0.00053242 -0.00996520
3536.9 0.01000 -0.00056759 -0.00996304
3630.9 0.01000 -0.00055350 -0.00996394
3724.8 0.01000 -0.00054011 -0.00996479
3818.8 0.01000 -0.00052736 -0.00996561
3912.8 0.01000 -0.00056582 -0.00996310
4006.7 0.01000 -0.00055309 -0.00996391
4100.7 0.01000 -0.00054094 -0.00996469
4194.6 0.01000 -0.00057440 -0.00996263
4288.6 0.01000 -0.00056233 -0.00996340
4382.6 0.01000 -0.00059997 -0.00996094
4476.5 0.01000 -0.00058789 -0.00996171
4570.5 0.01000 -0.00057630 -0.00996245
4664.4 0.01000 -0.00056517 -0.00996316
4758.4 0.01000 -0.00059766 -0.00996117
4852.3 0.01000 -0.00058656 -0.00996188
4946.3 0.01000 -0.00057587 -0.00996256
5040.3 0.01000 -0.00061193 -0.00996021
5134.2 0.01000 -0.00060119 -0.00996089
5228.2 0.01000 -0.00059083 -0.00996155
5322.1 0.01000 -0.00058082 -0.00996219
5416.1 0.01000 -0.00057116 -0.00996280
5510.1 0.01000 -0.00056182 -0.00996340
5604.0 0.01000 -0.00059246 -0.00996152
5698.0 0.01000 -0.00058309 -0.00996212
5791.9 0.01000 -0.00057402 -0.00996269
5885.9 0.01000 -0.00060802 -0.00996047
5979.9 0.01000 -0.00059886 -0.00996106
6073.8 0.01000 -0.00058998 -0.00996162
6167.8 0.01000 -0.00058136 -0.00996217
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6261.7 0.01000 -0.00057299 -0.00996270
6355.7 0.01000 -0.00060244 -0.00996090
6449.7 0.01000 -0.00059403 -0.00996144
6543.6 0.01000 -0.00058585 -0.00996196
6637.6 0.01000 -0.00057789 -0.00996246
6731.5 0.01000 -0.00061027 -0.00996035
6825.5 0.01000 -0.00060222 -0.00996086
6919.5 0.01000 -0.00059437 -0.00996136
7013.4 0.01000 -0.00058674 -0.00996184
7107.4 0.01000 -0.00057930 -0.00996232
7201.3 0.01000 -0.00057205 -0.00996278
7295.3 0.01000 -0.00060001 -0.00996107
7389.3 0.01000 -0.00059269 -0.00996153
7483.2 0.01000 -0.00058555 -0.00996199
7577.2 0.01000 -0.00061662 -0.00995996
7671.1 0.01000 -0.00060937 -0.00996042
7765.1 0.01000 -0.00060230 -0.00996087
7859.1 0.01000 -0.00059540 -0.00996131
7953.0 0.01000 -0.00058865 -0.00996174
8047.0 0.01000 -0.00058206 -0.00996216
8140.9 0.01000 -0.00057562 -0.00996257
8234.9 0.01000 -0.00060236 -0.00996093
8328.9 0.01000 -0.00059584 -0.00996134
8422.8 0.01000 -0.00058947 -0.00996175
8516.8 0.01000 -0.00061920 -0.00995980
8610.7 0.01000 -0.00061272 -0.00996022
8704.7 0.01000 -0.00060637 -0.00996062
8798.7 0.01000 -0.00060016 -0.00996101
8892.6 0.01000 -0.00062649 -0.00995941
8986.6 0.01000 -0.00062020 -0.00995981
9080.5 0.01000 -0.00061405 -0.00996020
9174.5 0.01000 -0.00060802 -0.00996058
9268.5 0.01000 -0.00060211 -0.00996095
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