
INTERNATIONAL UNIVERSITY LIAISON INDONESIA (IULI)

BACHELOR’S THESIS

A STUDY OF TRAJECTORY DESIGN FROM LEO TO GEO
USING IZZO’S LAMBERT-SOLVER

By

Maria Lucia
11201501019

Presented to the Faculty of Engineering
In Partial Fulfilment Of the Requirements for the Degree of

BACHELOR OF ENGINEERING
In

AVIATION ENGINEERING

FACULTY OF ENGINEERING

BSD City 15345
Indonesia

September 2020



STUDY OF TRAJECTORY DESIGN FROM LEO TO GEO
USING IZZO’S LAMBERT-SOLVER

APPROVAL PAGE

STUDY OF TRAJECTORY DESIGN FROM LEO TO GEO
USING IZZO’S LAMBERT-SOLVER

MARIA LUCIA
11201501019

Presented to the Faculty of Engineering
In Partial Fulfillment of the Requirements for the Degree of

BACHELOR OF ENGINEERING
In

AVIATION ENGINEERING

FACULTY OF ENGINEERING

Triwanto Simanjuntak, PhD
Thesis Advisor Date

Dr. Ir. Prianggada Indra Tanaya, M.M.E.
Dean of Faculty of Engineering Date

ii



A STUDY OF TRAJECTORY DESIGN FROM LEO TO GEO
USING IZZO’S LAMBERT-SOLVER

STATEMENT BY THE AUTHOR

I hereby declare that this submission is my own work and to the best of my knowl-
edge, it contains no material previously published or written by another person,
nor material which to a substantial extent has been accepted for the award of any
other degree or diploma at any educational institution, except where due acknowl-
edgement is made in the thesis.

Maria Lucia
Student Date

ii



A STUDY OF TRAJECTORY DESIGN FROM LEO TO GEO
USING IZZO’S LAMBERT-SOLVER

ABSTRACT

A Study of Trajectory Design From LEO to GEO
Using Izzo’s Lambert-Solver

by

Maria Lucia

Triwanto Simanjuntak, PhD, Advisor

Orbital maneuvering deals with all orbit changes needed to position a satellite
from an initial orbit to a selected final orbit. Examples of orbital maneuvering
techniques that can be used are Hohmann transfer, Bi-elliptical transfer, and Lam-
bert’s problem solver. Unlike the first two techniques, using Lamberts problem
for designing orbit transfer, as in this case from LEO to GEO, offers a flexibility
for selecting time of flight (tof). Lamberts problem itself basically is a two-point
boundary value problem or a determination of an orbit that consists of two posi-
tions vector and the time of flight. There are various other methods to solve the
problem, and Izzo’s solver is one of the available methods and was selected as the
main focus of this thesis. In this thesis, the Izzo’s solver was implemented nu-
merically using Python language programming and used to study how ∆v and tof
vary under variation of initial orbital elements, such as inclination, right ascension
of the ascending node, argument of perigee, and altitude. The results from this
thesis can be used as a decision parameter in selecting launching service/site and
consideration on how total ∆v reduction could save the total launch service that
will impact the payload of the satellite.
Keyword: Orbital maneuvering, Lambert’s problem, Izzo’s solver, Orbital elements,
∆v
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CHAPTER 1
INTRODUCTION

1.1 Background

In this modern era, a lot of people depend on their gadgets to communicate with
each other. This type of communication doesn’t matter if you are far away or
near the intended person, because nowadays people can easily access the internet.
We can also call it wireless communication which not only we can communicate
easily using the internet, but it could also be used as a media to entertain people
whether it comes from television or online provider. All of this could happen
because satellite communications.

Talking about the satellite itself especially in the area of communication, have
so many advantages for industries that would want to develop a satellite. For
example, many people may think that the number of users will affect the cost of
developing a satellite, but in reality, it doesn’t. And whether the satellite is crossing
continents or staying local, it also doesn’t affect the cost. This gives the industries
the benefits to have cost-effectiveness. Superior performance could also give people
the benefit of developing satellite communication. This type of satellite can also
be used as a broadcasting application like television. The two-way IP network,
speed, and consistency have become a bigger role for businesses, governments, and
costumers to use. (Advantages of Satellites | Telesat, n.d.)

Another area that could be explored is remote sensing. The utilization of remote
sensing might include the ability to collect detail data or information through broad
geographical areas, characterizing natural or physical properties on the ground, rou-
tinely analyzing surface and observe their changes over time, and lastly the ability
to accommodate such data with other information to support decision making. (-
REMOTE SENSING DATA: APPLICATIONS AND BENEFITS , n.d.)
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Satellite utilization may also benefit a country in the defense sight. In a specific
case that a country may have is the location of a terrorist for an example. The
government or military will need to do surveillance of every move the terrorist
made and make sure their track is recognizable and keep the data for capturing or
possibly attacking.

In the sense of navigation, tracking the military vehicles is very crucial for
the safety of the personal. The military base needs to be always informed of the
whereabouts of their people, so they will know if an attack is coming in their
direction or any danger is in their path. A satellite could also be used on placing a
precise location in the case of bombing. The bomb needs to hit the target because
if not it might affect others that live near the target.

Early warning that the satellite could detect will help a country from get-
ting massive damages. Early warning means, the military could be alerted when
there is a missile strike, tracking a missile if the path is near the country and
would be dangerous, and nuclear explosion monitoring if the situation becomes
life-threatening.(Otani, Ohkami, Naohiko KOHTAKE, & Sakurai, 2012)

In the development of satellites in Indonesia, especially on placing a satellite in
GEO (Geostationary orbit) or in general, Indonesia is still far behind from other
countries, such as the USA, Singapore, India, etc. It is a known fact that for the
FSS (Fixed Service Satellite) category, the needs of national telecommunication
satellites that are met by national capacity have reached 70%, where 30% of it
is fulfilled by foreign satellites. For the MSS (Mobile Service Satellite) category,
Indonesia still relies entirely on foreign satellites. However, the need for national
telecommunications satellites will increase in the next few years. (PUSAT KAJIAN
KEBIJAKAN PENERBANGAN DAN ANTARIKSA, n.d.)

Developing a national telecommunication satellite and placing them on GEO
will give Indonesia several benefits. Firstly, Geosynchronous orbit has the benefit of
keeping the satellite in the same location throughout the day, and the antennas can
be pointed towards the satellite and stay on track. Telecommunication satellites
will be benefited from this because many application including broadcasting is relay
on this type of satellite.

In broadcasting, placing the satellite in GEO is important. Because, in this case,
it is not practicable to change the direction of the antenna. It needs to remain in

2/89
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the same position as mentioned in the previous passage. (Satellite Geostationary
Satellite Orbit, GEO ż Electronics Notes, n.d.)

According to CNN Indonesia in July 2019 (evn, n.d.), currently, the National
Institute of Aeronautics and Space Indonesia or most people know as LAPAN is
not focus on sending an astronaut to moon, but instead, they are mainly focused
on technology that surrounds the earth’s orbit. That means from developing a
satellite until rocket launching will be LAPAN most priority.

LAPAN’s head of the organization, Dr. Thomas Djamaluddin, said that they
didn’t rule out the possibility for Indonesia to contribute to space exploration
missions. There are already several universities interested in developing robotic
that would like to be involved in space exploration missions.

Recently, in an event called Rekornas Inderaja 2020, Dr. Bambang Soe-
mantri Brojonegoro said that "Satellite is the answer for the future". That is why
LAPAN need to focus and concentrate on mastering the transfer technology of
a satellite. In this context, Indonesia is in the need to have or developing more
remote sensing satellite.(Rakornas Inderaja 2020 : Satelit adalah Jawaban Masa
Depan, n.d.)

On January 28, 2019, LAPAN has launched the new update of their LAPAN:Fire-
Hotspot (using remote sensing satellite). This update includes the quality of the
information in forest fire monitoring and launching the website version and mobile
application that are equipped with the location and point of the hot-spot. LA-
PAN:FireHotspot is still not nearly enough to cover the need for remote sensing
satellite and asked more stakeholders to be involved in developing more remote
sensing satellite for the greater future in Indonesia. (antaranews.com, 2020)

Launching a new satellite is an important activity. The satellite system’s
longevity relies on a sequence of successful launches, and each launch represents a
significant financial investment. Launching a satellite is a complex procedure that
involves many teams from all over the world or specifically the space industry that
will work together through ups and downs until the satellite ready to be launched.

Upon finalization, a newly manufactured satellite will be moved for final testing
and fueling to the launch site before being fitted to the launch vehicle. The launch
is a complex multi-stage process that varies depending on the system used.

To place a satellite in geosynchronous or geostationary orbit, there are many

3/89



A STUDY OF TRAJECTORY DESIGN FROM LEO TO GEO
USING IZZO’S LAMBERT-SOLVER

methods to do so. The most common and simplest way is by using Hohmann
Transfer. At first, the satellite will be placed on a Low Earth Orbit (LEO) with
an altitude approximately 220 km. Once the satellite reaches LEO, the rockets are
fired to place the satellite on an elliptical orbit with the LEO as the perigee and
GEO as the apogee with an altitude around 35786 km. After this process, a rocket
or booster is fired again when it reached the final altitude to maintain the satellite
in GEO with the correct velocity. (Launching Satellites | ESOA, n.d.)

Figure 1.1: Geostationary Orbit (Satellite Orbits | ESOA, n.d.)

In launching a satellite, it is important to estimate fuel consumption and trans-
fer velocity during the trip. These estimations might as well called fuel bud-
get/propellant budget and transfer budget respectively. According to (Delta-v
budget, 2019), transfer budget is also known as delta-v budget. This velocity
change is needed to determine the estimation of how much propellant for a specific
mass and propulsion system is needed per vehicle. Launching a satellite is expen-
sive, especially to GEO. The cost could reach up to 30,000 USD per kg. (SPACE
FREIGHTER | Cannae, n.d.)

To transfer a heavier satellite from LEO to GEO is needed more fuel than for
a lighter one, but at the same time, the delta-v required the same. Delta-v budget
can be calculated by using various methods. Among them are Hohmann transfer,
bi-elliptical transfer, low energy transfer, etc. Delta-v budget changes with launch
time. And course corrections usually required some fuel budget. The propulsion
systems cannot necessarily provide the right propulsion in the right direction at
all times and there is also confusion in navigation. For correct variations of the
optimal trajectory, certain propellants must be reserved.

4/89
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BRIsat is one of the satellite that placed in GEO. BRI (Bank Rakyat Indonesia)
signed an agreement to place a satellite in GEO with Space System/Loral, LLC
(SLC) from US and ArianeSpace from France. BRIsat itself is a communication
satellite that have 3540 kg of mass that could bring 9 Ku-band transponder and C-
band transponder. The total launch cost for BRIsat to reach GEO roughly around
106,200,000 USD. Which is very expensive and it is expected to be that way. But
by reducing the total Delta-V, getting a lower launch cost or put more payload to
the satellite is very possible. (Page, 2020)

Figure 1.2: Launch Vehicle:
Ariane-5ECA (Page, 2020)

Figure 1.3: BRIsat 1
(Page, 2020)

1.2 Problem Statement

This Thesis mainly will discuss the study to design the orbit transfer from LEO to
GEO. Trajectory design is needed in order to solve the problem. Trajectory design
itself is the initial data that already given or could find during the study. Using
classical orbital element (COE) is the one that used to find the trajectory design
in this thesis. The initial LEO itself is depends on the launch service / launch site.
Classical orbital elements consists of:

a = semimajor axis

i = inclination

e = eccentricity

Ω = right ascension of the ascending node

ω = argument of perigee

ν = true anomaly

5/89
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Figure 1.4: Classical Orbital Elements (Vallado, 2013)

In this period of time, no more than two impulses is use to do the orbit transfer
from LEO to GEO. By doing so, Lambert’s problem solver is required. Then,
evaluate it on how the variation of initial COE could affect the Total Delta-V.

1.3 Research Goal

The first goal of this thesis is to implementing Lamberts problem solver numerically
by Dr. Izzo (Izzo, 2015).

The second is to study how the variations of initial classical orbital elements
(COE) affect the result of Total ∆v.

1.4 Research Scope

There are two main scopes of this thesis, which are:

• Considering Lamberts problem for a single revolution only;

• Use pure two-body problem dynamics - without any perturbation forces.

It is important to note that this thesis project excludes orbit phasing maneuvers.

6/89
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1.5 Research Approach

The research approach of this study is to analyze how Total Delta-V varies with
time-of-flight (tof) and how it varies for single revolutions in addition to considera-
tion of numerous initial orbital elements. In the end, it is possible to see which one
is the best initial orbital elements to produce the maximum Total ∆v reduction
and how it could save the cost to travel from LEO to GEO. The data on this study
will be mostly self-generated by using numerical simulations on the equations of
motion that govern the motion of a satellite while orbiting the Earth. To analyze
this study, it will be conducted by using computer programming which is Python
programming language.

7/89
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CHAPTER 2
LITERATURE REVIEW

2.1 Introduction to Orbital Maneuvering

Orbital maneuvering, or often could also be called orbit raising, is the use of various
techniques that could cover all orbital changes required after a satellite is placed into
the intended orbit. There are three techniques to maneuver, which are coplanar,
noncoplanar, and fixed ∆v. hese techniques are the ones that help us to change
numerous orbital elements.

Before going into a deep discussion in orbital maneuvering, several parameters
are important in the orbit raising theory. This parameters may also be called the
trajectory design that mainly consist of rinitial, rfinal, vinitial, and vfinal. In Figure
2.1, it is shown, to do an orbit raising, transfer orbit is needed. It required to have
two points, that located near and far the primary body. Each of these points has
a velocity change to achieve orbit raising. In astrodynamics, point a is known as
periapsis and point b as known as apoapsis.

In coplanar maneuver, the maneuver (initial and final orbit) stays in the same
plane. The change happened when talked about the orbit’s size (semimajor axis,
a) and shape (eccentricity, e), and the apsides location (argument of perigee, ω).
Coplanar burns could be tangential or non-tangential. To obtain the maximum
efficiency in burning, a zero flight path angle is needed (ϕfpa ̸= 0), so that tangential
burns occur on elliptical orbits only on apoapsis and periapsis. Such burns process
allowed to make three coplanar changes, which are:

1. Hohmann transfer (two tangential burns).

2. One-tangent burns (one tangential burn & one non-tangential burn).

3. General transfer (two non-tangential burns).

8/89
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Figure 2.1: Orbit Parameters (Vallado, 2013)

The required change needed between inclination, i, and argument of perigee,
ω are needed to do an intercept in a noncoplanar transfer. Three possibilities for
maneuver in noncoplanar transfer are i only (applying the ∆v at a nodal crossing
outside the plane), ω only (applying an out-of-plane ∆v at a certain point in orbit),
or i and ω (applying ∆v at any other point). (Vallado, 2013)

Impulse maneuvering is the one that shifts the velocity vector’s magnitude and
direction instantaneously by rapid firing onboard rocket motors. The change of ∆v
is happened because of the impulsive maneuver.

Applying a single impulse could make several orbital changes. For example,
in a circular orbit, a simple plane change could happen by executing a change of
inclination. It is also possible at circular orbit to make an orbit elliptical. During
the impulse, the radius and shape will not change, but it will create new velocity.
(Single Impulse Maneuvers in Circular Orbit, n.d.)

Multiple impulsive or let’s just say n-impulse, will not only affect the change
of ∆v and the time consumed but also the propellants burn will varies with how
many impulses will be used during the maneuvering. Take an example from the
Hohmann transfer theory. Because it only using two-impulse maneuver for trans-
ferring between two coplanar and in this case circular orbits, it produces the most
energy-efficient. But the time consumed during this orbital maneuvering is long
and it may not meet with the time’s goal. (Curtis, 2014)

On providing an optimum propellant burns, low-thrust orbital transfer system
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may be the solution. With changes in all orbital elements except the true anomaly,
it develops control laws that exercised throughout the maneuver (Curtis, 2014; Sim-
ple Control Laws for Low-Thrust Orbit Transfer , n.d.). Another term of low-thrust
is finite burn, where it means "non-zero" or practically over a longer period. The
important detail in a finite burn includes mass, center of mass, thruster positions,
moment of inertia, fuel consumption, specific impulse, etc. (Orbital maneuver ,
2019)

2.2 Coplanar Maneuvers

As mentioned in (Vallado, 2013) and the previous passages, coplanar maneuver
could have either tangential or non-tangential burn or both. In Figure 2.2, a simple
tangential transfer is shown where at the transfer point both orbits are tangent.
With this information, the required change in velocity could be easily found by
using:

∆va = vfinal − vinitial (2.1)

Figure 2.2: Tangential Orbit Transfer with ϕfpa = 0° (Vallado,
2013)

The nontangential transfer orbit is required ro reach the final orbit when per-
forming a ∆va maneuver in entering a transfer orbit. It is important to notice in
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Figure 2.3, the velocity vector is not parallel anymore, even though this process is
still coplanar.

With the introduction of nontangential transfer, it requires a new velocity
change formula. In this case, assume knowing the final velocity from the desired
final orbit,

∆vb =
√
v2transb + v2final − 2vtransbvfinal cos(ϕtransb − ϕfinal)

∆v⃗b = v⃗final − v⃗transb

(2.2)

Figure 2.3: Nontangential Orbit Transfer with ϕfpa ̸= 0
(Vallado, 2013)

2.2.1 Hohmann Transfer

The Hohmann transfer is the most common and easiest method to be used in terms
of orbital maneuvering or orbit raising. It is a two impulse maneuver between two
coplanar circular orbits and the most energy-efficient transfer. As illustrated in
Figure 2.4, with two circular orbit, the end result of transfer orbit is elliptical
(Curtis, 2014). Another important thing to remember is that the flight path angle
(ϕfpa) must be zero.

Originally Hohmann transfer is only considering a transfer between two circu-
lar orbit, but there are others that have explored transfer between coaxially even
elliptical orbit. Figure 2.5, shows the same understanding as Figure 2.4 but the
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only difference is the initial and final orbit’s shape. Note that elliptical transfer
have a negative specific energy ε.

Figure 2.4:
Hohmann Transfer
between Circular
Orbits (Curtis, 2014)

Figure 2.5:
Hohmann Transfer
between Elliptical
Orbits (Vallado, 2013)

Semimajor axis a, played an important role in determining the energy of an
orbit transfer. To lower the negativity of ε, it requires to reduce its magnitude by
increasing the energy. By this definition, it is clear that to have more energy, the
semimajor axis need to be larger.

Looking at Figure 2.4, There are point A andB which are periapsis and apoapsis
respectively. In order to do an orbital maneuvering, after placing the primary object
in the initial orbit, a change of velocity is required. The inital change of velocity
at point A or periapsis is also called ∆vA. This allowed the object to do an orbit
raising with the help of Hohmann transfer to achieve point B or apoapsis. Then a
second velocity change is required to exit the Hohman transfer ellipse then place
the object in the final orbit which is symbolized by ∆vB.

The goal of this Hohmann transfer is to see the total delta-v required to do this
maneuver. Finding ∆vtotal, there are steps to be fulfilled;
(Notes: µearth is 398600 km3/s2)
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1. With knowing the radius of apogee and perigee, finding the semimajor axis
is next step to tack.

atrans =
rinitial + rfinal

2
(2.3)

2. Find the initial and final velocity.

vinitial =

√
µ

rinitial

vfinal =

√
µ

rfinal

(2.4)

3. Then the transfer velocity at point A and B.

vtransa =

√
2µ

rinitial
− µ

atrans

vtransb =

√
2µ

rfinal
− µ

atrans

(2.5)

4. Calculate the velocity change at periapsis and apoapsis.

∆va = vtransa − vinitial

∆vb = vfinal − vtransb
(2.6)

5. Lastly find the total Delta-v that required.

∆vtotal = |∆va|+ |∆vb| (2.7)

Hohmann transfer could also benefit us in finding the transfer time of flight,
τtrans, which are

τtrans = π

√
a3trans
µ

(2.8)
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2.2.2 Bi-elliptical Hohmann Transfer

The bi-elliptical Transfer implemented two Hohmann transfer in a series. Figure
2.6 proves that this type of transfer is using two Hohmann transfer to achieve the
final orbit.

Figure 2.6: Bi-elliptical Hohmann Transfer (Vallado, 2013)

The bi-elliptical transfer is more complicated than using a single Hohmann
transfer. But it is not as complicated as using other methods like Lambert’s Prob-
lem that later on will be discussed. This complication rises because it uses three
burns to achieve the final orbit. However, the one advantage brought by using
bi-elliptical transfer rather than Hohmann transfer is we could save more ∆vtotal.

∆vtotal(bi−elliptical) < ∆vtotal(Hohmann)

This bi-elliptical transfer is worked as the primary object in point a, maneu-
vered to point b which produces the first transfer (Trans1) and the first Hohmann
transfer. Then, the object makes another maneuver to point c and create sec-
ond transfer (Trans2) or the second Hohmann transfer. And lastly maneuvered it
to the final orbit. In the end, these steps are the logical reason that bi-elliptical
transfer produces the three burns throughout the orbit raising. Figure 2.6, make
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it easy to see the velocity change in every maneuver made during the cycle of the
bi-elliptical transfer, which are ∆va,∆vb, and ∆vc.

Bi-elliptical has the same goals as the Hohmann transfer, which are to find the
value of total Delta-v and the time of flight of the transfer with the help of known
parameters, like initial radius (rinitial), transfer radius or intermediate radius at
point b (rb), and final radius (rfinal). The steps below will explain how to find
those goals;

1. Find the two semimajor axis from the two Hohmann transfer.

atrans1 =
rinitial + rb

2

atrans2 =
rb + rfinal

2

(2.9)

2. Find all the necessary velocity that needed to be found.

vinitial =

√
µ

rinitial
vfinal =

√
µ

rfinal
(2.10)

vtrans1a =

√
2µ

rinitial
− µ

atrans1
(2.11)

vtrans1b =

√
2µ

rb
− µ

atrans1
vtrans2b =

√
2µ

rb
− µ

atrans2
(2.12)

vtrans2c =

√
2µ

rfinal
− µ

atrans2
(2.13)

3. Then calculate all the velocity change during the transfer.

∆va = vtrans1a − vinitial

∆vb = vtrans2b − vtrans1b

∆vc = vfinal − vtrans2c

(2.14)
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4. Lastly calculate both of the goals withing ∆vtotal and τtrans.

∆vtotal = |∆va|+ |∆vb|+ |∆vc| (2.15)

τtrans = π

√
a3trans1
µ

+ π

√
a3trans2
µ

(2.16)

Comparing Hohmann transfer and bi-elliptical transfer is important to see which
of these two is the most useful to use for orbital maneuvering. But it is important
to note that each method has its advantage and whether to use Hohmann or bi-
elliptical transfer is a choice that has to be made for the individual needs of every
organization involved in exploring the orbital maneuvering.

The first thing to do is to find the ratio of the magnitude whether it’s from the
radius or with the circular orbit semimajor axis.

R ≡ rfinal/rinitial = afinal/ainitial (2.17)

For the Hohmann transfer, the formula is

∆vHohmann

vinitial
=

(
1− 1

R

)√
2R

1 +R
+

√
1

R
− 1 (2.18)

Then for the bi-elliptical Hohmann Transfer, there is another parameter that need
to be considered. which is R∗ = rb/rinitial.

∆vbi−elliptic

vinitial
=

∣∣∣∣∣
√

2R∗

1 +R∗ − 1

∣∣∣∣∣+
∣∣∣∣∣
√

2

R∗

(√
1

1 + R∗

R

−
√

1

1 +R∗

)∣∣∣∣∣
+

∣∣∣∣∣
√

1

R

(√
2R∗

R +R∗ − 1

)∣∣∣∣∣
(2.19)

2.2.3 One-Tangent Burn

Using Hohmann transfer or bi-elliptical transfer requires a long flight time, espe-
cially for bi-elliptical because of the three burns method. To overcome this problem,
one-tangent burn is the solution. One-tangent burn has both tangential burn and
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non-tangential burn. From both Figure 2.7 and 2.8, it shows that this method
will reduce the transfer time of the previous techniques but the problem is, it will
increase the ∆v required during the process.

Figure 2.7: One-
Tangent Burn for Cir-

cular Orbit

Figure 2.8: One-
Tangent Burn for Ellip-

tical Orbit

The one-tangent burn uses various transfer orbit’s type and shape but mostly
uses either the parabolic or hyperbolic types. If we take a look in Figure 2.7, it
shows that in the circular orbit, the transfer orbit’s type is parabolic and elliptical
orbit that shows in Figure 2.8 is using hyperbolic. But it is not a guarantee that
all cases will be the same. In reality, it depends on the velocity change capability
and time availability.

This method is more complicated to use rather than using Hohmann transfer
or bi-elliptical transfer, because of the need to do a non-tangential burn. This type
of burn depends on true anomaly(semimajor axis or eccentricity), ννν, to find the
location of the non-tangential burn. Because the values of periapsis and apoapsis
is not exist, we could not calculate the transfer semimajor axis using Eq. 2.3.

The solution for using a one-tangent burn is quite difficult but by having the
initial and final radius, and the true anomaly of the transfer, we could calculate
the total of Delta-v and of course the time of flight. In this moment, implementing
one-tangent burn is easier for circular orbit and below is steps to do so;
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1. Find the reciprocal of Eq. 2.17.

R−1 =
rinitial
rfinal

(2.20)

2. Find the eccentricity and semimajor axis of the transfer respectively.

etrans =
R−1 − 1

cos(νtransb)±R−1
atrans =

rinitial
1± etrans

(2.21)

ifνtransb < 180°, then

ifνtransb > 180°, then

−periapsis

+apoapsis

3. The necessary velocity during the process.

vinitial =

√
µ

rinitial
vfinal =

√
µ

rfinal
(2.22)

vtransa =

√
2µ

rinitial
− µ

atrans
vtransb =

√
2µ

rfinal
− µ

atrans
(2.23)

4. Calculate velocities change from each point, then find the total Delta-v of
the sequence.

∆va = vtransa − vinitial (2.24)

tan(ϕtransb) =
etrans sin(νtransb)

1 + etrans cos(νtransb)

∆vb =
√
v2transb + v2final − 2vtransbvfinal cos(ϕtransb)

(2.25)

∆vtotal = |∆va|+ |∆vb| (2.26)
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5. The last step is to find the time of flight during the transfer.

cos(E) = etrans + cos(νtransb)
1 + etrans cos(νtransb)

τtrans =

√
a3trans
µ

{2kπ + (E − etrans sin(E))− (Eo − etrans sin(Eo))}

(2.27)

*Notes: E = Eccentric Anomaly & Eo = zero (starts at periapsis).

2.3 Non-Coplanar Maneuver

In order to do a non-coplanar maneuver, it is mentioned in (Vallado, 2013) that we
might change two elements from the six orbital elements which are inclination, i,
and right ascension of the ascending node, Ω. This two elements could be affected
when ∆v is applied in certain point of the transfer.

The question sometime arise why do we need a non-coplanar maneuver, and
there are three answers for that question, which are:

To determine the geometry for launching a satellite
In launching a satellite there is certain a physical limitation, especially for direct
launches. That is why the inclination only maneuver is necessary. Direct launch
itself is the process of launch from ground and goes directly to the desired orbit.
If we don’t want to do an inclination maneuver to still have a direct launch, the
location site latitude need to be less than or equivalent to the desired inclination.
To find the launch window, it involves three steps, which are

• Discovering the launch azimuth, β.

• Finding the auxiliary angle, λu.

• Determine the Greenwich Sidereal Time (GMST) or LST.

The expression for the inclination is

cos(i) = cos(ϕgc) sin(β) (2.28)
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Table 2.1 Detailed location of several launch services from (Vallado,
2013) with some modification and two new additions.

And the launch azimuth, β,

sin(β) = cos(i)
cos(ϕgc)

(2.29)

The determination of the direction of launch location
By doing this determination, it could influence how much amount of velocity, the
booster should apply. By using angular-velocity relations, we may find the influence
of the launch’s site velocity.

v⃗L = ω⃗� × ⃗rsite or vL = |ω⃗� × ⃗rsite| = ω�rsite cos(ϕgc) (2.30)

Finding the best launch window to launch a satellite.
The launch window is the time period during which we can launch a satellite into
a desired orbit and still retain the preferred parameters for the mission.
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Finding the auxiliary angle, λu, is the next step to find the acceptable launch
window.

cos(λu) =
cos(β)
sin(i) (2.31)

When is the best time to launch a satellite?
When the angles are in exact position as intended, the Greenwich sidereal time,
θGMST could be found.

λu = θLST − Ω

θGMST = Ω+ λu − λ

The time of day (UT) for launch,

UT =
θGMST − θGMST0h

ω� (2.32)

Table 2.1 indicate the availability of some of launch service location. To avoid
crowded areas, minimum and maximum azimuth values should have been deter-
mined. But sometimes launch services do not provide such data. And to determine
the orbital inclination, Eq. 2.28 is needed.

2.4 Combined Maneuvers

Talking about coplanar and non-coplanar maneuver is necessary for completing or
achieving orbit raising. But in a real-life mission, sometimes it is required to do an
unexpected maneuver. While the plan is using The Hohmann transfer, we could
not forget about the unpredictable things that would happen in outer space, and
sometimes we need the non-coplanar maneuver to avoid any disaster that could
occur. Like the changes of inclination only or the right ascension of the ascending
node only or even both. Doing this kind of changes is required more time to
achieve the final orbit. If the circumstances are possible, it’s best to combine both
maneuver into one specific maneuver.

Using a combined maneuver will show some benefits that produce during the
process of maneuvering. The overall change in velocity requirements will be re-
duced, and because of two methods of maneuver is combined into one single ma-
neuver, it will show that the number of separate burns is diminished, and the time
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to complete this operation will be decreased.
It is essential to keep the change in velocity low, and that is the reason why

minimum-inclination maneuvers are required. Precisely the combination of
inclination and altitude. Every velocity encompasses the Hohmann transfer, and
the rotation of the velocity vector is the angle that indicates the desire each provider
use to change the inclination.
To achieve the minimum combined plane maneuver,


Iterate :

or Estimate :

sin(s∆i) = ∆vavfinalvtransb sin((1− s)∆i)

∆vbvinitialvtransa

R =
rfinal
rinitial

s ≈ 1

∆i
arctan

[ sin(∆i)
R3/2 + cos(∆i)

] (2.33)

∆iinitial = s∆i ∆ifinal = (1− s)∆i (2.34)

∆vinitial =
√
v2initial + v2transa − 2vinitialvtransa cos(∆iinitial)

∆vfinal =
√
v2final + v2transb − 2vfinalvtransb cos(∆ifinal)

∆v = ∆vinitial +∆vfinal

(2.35)

*note: s = a scaling term (need to be carefull with the units)

In planning a satellite mission, the Fixed-∆v maneuvering is considered. A
solid propellant in rockets is the caused in having a stable fixed-∆v capacity, and
it couldn’t be turn on and off. In this part, another parameter is added, which is a
payload angle, γ. The payload angle is the angle between the initial velocity vector
and the new velocity vector.

cos(γ) = −
v2initial +∆v2 − v2final

2vinitial∆v
(2.36)
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∆i→ decreasing −180° ≤ γ ≤ 0°

∆i→ increasing 0° < γ < 180°

cos(∆i1) =
v2initial + v2transa −∆v2

2vinitialvtransa
(2.37)

*note: if the fixed-∆v and the inclination, ∆i, is not acceptable, another motor
or another method is required.

In consideration of circular orbit, to implement the use of combined maneuvers,
two crucial points need to be look over. First, it is essential to know the inclination
change for fixed-∆v. Then, input all the velocities changes and the total velocity
change for the maneuver.

2.5 Lambert’s Problem

Born on August 26th, 1728 (Johann Heinrich Lambert, 2020), Johann Heinrich
Lambert was the mastermind behind Lambert’s problem. In the 18th century,
Lambert proposed the idea that an orbit could be determined by only having two
position vectors and the time of flight. After Lambert proposed this idea, the
problem then solved by Joseph-Louis Lagrange whose born on January 25th, 1736
(Joseph-Louis Lagrange, 2020), with mathematical proof.

In the discussion of Lamberts problem, the time of flight is crucial because of
its relationship with other variables. It is stated in (Lambert’s problem, 2019) that:

The transfer time of a body passing between two points on a conic tra-
jectory is only a function of the sum of the distances between the two
points from the origins of the force, the horizontal distance between the
points, and the conics semimajor axis.
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Figure 2.9: Johann
Heinrich Lambert
(Johann Heinrich

Lambert, 2020)

Figure 2.10: Joseph-
Louis Lagrange
(Joseph-Louis La-

grange, 2020)

2.5.1 Introduction to Lambert’s Problem

Lambert’s problem is the problem of the two position vectors and the time of flight
between the both of them. Different from Hohmann’s transfer, Lambert’s problem
doesn’t have an initial orbit because the orbit itself is not yet fully known.

In Hohmann transfer, it focused on its apoapsis and periapsis, but in Lambert’s
problem, those two aspects are not necessary; in fact, it’s unknown. Three variables
impact in finding the solution of Lambert’s problem, which are:

1. Two Position Vectors.

2. The Time of Flight.

and both of them are fully known from the beginning. But the orbit between the
endpoints is unknown.

Lambert’s problem have a transfer methods, tm. Transfer method itself is a
process to travel between two points. In Figure 2.11, which explain that there are
two way to do a this method. Figure 2.11a shows a short way of transfer method
with true anomaly is fall behind 180 degree and the transfer method is equal to
+1. On the contrary, Figure 2.11b shows a long way of transfer method with true
anomaly exceed 180 degree and the transfer method is equal to -1.

With the help of known two position vectors, this transfer method will help in
finding an orbit. The orbital plane will be found when the two vectors are placed.
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(a) A short way transfer method with (∆ν <
180° & tm = +1)

(b) A long way transfer method with (∆ν > 180°
& tm = −1)

Figure 2.11: Transfer Methods in Relation with Lambert’s Prob-
lem (Vallado, 2013)

To make it all more clearer, once the transfer method is defined, this produces only
one specific solution to the problem.

Figure 2.12: A Simple Definition of Lambert’s Problem (Figure
1. Schematic diagram of the classical Lambert problem involving...,

n.d.)

In Figure 2.12, it shows the two position vectors (rather than vector r⃗0 and r⃗,
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we use point P1 and P2 respectively to make it easier) and a time of flight. With
this information, there are two possibilities in which:

1. The two-position vectors are in the same plane of orbit but displaced over
time.

2. The two-position vectors are placed in different planes or orbits in which a
transfer orbit is going to took place.

The general idea to do a transfer orbit from point P1 to P2 is by doing a ma-
neuver and finding a trajectory. This maneuver and trajectory are done randomly
based on the necessity of the problem. There are many ways to reach the final point
P2, like doing a single-impulse maneuver, two-impulse maneuvers, or n-impulse ma-
neuvers. The time of flight is also a factor in this transfer orbit, and how much
time will be consumed during this transfer is solely depends on the organization
that launched this process. If we want the transfer faster to reach the destination
(final orbit), we will use more fuel in the process. But if we want to restrict the
fuel consumption during the transfer orbit, then the transfer will take longer to
achieve the final orbit.

By doing a transfer orbit, a transfer angle or the angle in the original orbit-
determination problem between two position vector need to be determined. And
assuming a direction is a must, which:

cos(∆ν) = r⃗0 · r⃗
r0r

sin(∆ν) = tm
√
1− cos2(∆ν)

(2.38)

According to (Vallado, 2013) and (Izzo, 2015) that besides Gauss’s solver on
the famous Lambert problem, there are others that try to solve it. It was men-
tioned multiple times that Gooding’s solver is one of the fastest algorithms to solve
Lambert’s problem and the most accurate at that time.

The development of Lambert’s problem is widely developed by various intel-
ligent people. Lancaster and Blanchard (1969), Gooding (1990), Battin (1999),
Thorne (2004), Izzo (2014) are among the others that try to develop their Lam-
bert’s problem solver.
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2.5.2 Classical Algorithm

Lambert’s problem is based on its problem geometry, and it contributes a solution in
finding the minimum-energy transfer between the two known points from position
vectors.

As mentioned in the previous passage, Lambert’s problem transfer time depends
on the semimajor axis. But besides the semimajor axis, the chord in its geometry
is also essential. The chord is the length between two position vectors, c, which is
described in Figure 2.13.

Figure 2.13: The Problem’s Geometry of the Lambert Problem
(Vallado, 2013)

In finding the chord line, it is necessary to use the cosine law, which is;

c =
√
r20 + r2 − 2r0r cos(∆ν) (2.39)

Through this triangle as Figure 2.13 provided, it produces a Semiperimeter, s.

s =
r0 + r + c

2
(2.40)
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In Figure 2.13, we could see there is a symbol F , and it is called the Foci. The
distance from foci to any desired point during the process, r0 or r, is equal twice the
semimajor axis. The distance between the two focis is called the semiparameter
which represented by 2ae.

To conclude this part, Lambert provides the algorithm for minimum energy,
which also called the classical algorithm.

cos(∆ν) = r⃗0 · r⃗
r0r

c =
√
r20 + r2 − 2r0r cos(∆ν)

s =
r0 + r + c

2

amin =
s

2
pmin =

r0r

c
(1− cos(∆ν))

emin =

√
1− 2pmin

s

αe = π sin(βe
2
) =

√
s− c

s

tmin(amin) =

√
a3min

µ
[αe ∓ (βe − sin(βe))]

tmin(absolute) =
1

3

√
2

µ

{
s3/2 − (s− c)3/2

}
v⃗0 =

√
µpmin

r0r sin(∆ν)

{
r⃗ −

[
1− r

pmin

{
1− cos(∆ν)

}]
r⃗0

}
(2.41)

*Notes:

1. pmin is a semiparameter.
2. αe and βe is a new constant for elliptical orbits that Prussing and Conways
introduced according to (Vallado, 2013).
3. The minus and plus (∓) sign is dependent on the use of short way or long
way transfer method.
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2.5.3 The Variety of Lambert’s Problem Solvers

Gauss’s Solution for Lambert’s Problem

Figure 2.14: The Process of Gauss’s Solution for Lambert’s Prob-
lem (Vallado, 2013)

Originally, Gauss’s method is the same as the classical algorithm that relies on its
problem’s geometry and only capable of elliptical transfer. But as the times goes
by and idea float in, Gauss proposed an approach that involves the two position
vectors that will create an area swept out during the transfer orbit.

Figure 2.14 present us with the general idea how Gauss solve the Lambert’s
problem. There is two zones that are useful during the process, which are; the
shaded triangle zone, A∆, and the whole total area swept out during the process
by the satellite, A.

Thorne’s Solution for Lambert’s Problem

In 2004, Thorne successfully developed a series of solutions in the hope of having
a better solver to solve Lamberts problem. It is a massive factor in the develop-
ment of finding the transfer time for either elliptical or hyperbolic. As already
explained from the previous passages, the transfer time is equitable to a complex
and challenging function of the observed orbits unknown semi-major axis. With
Thornes solver needed to improve convergence properties, it is advisable to solve
the problem using a series of inversion and reversion. Because Thornes solver could
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directly encompass the time of flight, this knowledge is how we could differentiate
Thornes solution from others. And from this information, we could take the time
derivatives from the series equation to minimize the ∆v production during the orbit
maneuvering.

Universal Variables to Solve Lambert’s Problem

Bate, Mueller, and White develop universal variables in 1971. This solution is
helpful when we talk about applying to many intercept and rendezvous problems.

There are three variables that dependent with each other in this method, which
are: The The Universal variable, χ, relates energy, ξ, and angular momentum,
h.

χ =
√
a∆E

Bate, Mueller, and White developed an idea of presenting a Newton-Raphson’s
iterative in finding the universal variables. This bisection will sacrifices the pro-
cessing time a little to get a much more robust process for a broad diversity of
orbits. It is important to note that using this universal variable is difficult because
the iteration is not always behaved well.

Battin’s Method in Solving Lambert’s Problem

Battin developed this method in 1987. The technique he produced is robust and
makes it easier to be used in 180° transfer, which mostly found in Lambert cases.
His method is a very long derivation, and to many people that are not familiar
with this subject will assume this is hard to implement.

Most of Battin’s algorithm uses the initial development of Lambert and Gauss
formulation. At the same time, Battin introduces a new variable called the parabolic
mean point radius, rop. It explains the arithmetic mean between the fundamen-
tals of ellipse’s semimajor axis and the line section from the primary target to the
point arithmetic mean chord position.
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Gooding’s Method in Solving Lambert’s Problem

In 1990, Gooding developed an algorithm to solve the Lambert problem. His
method is purely algebraic and iterates in low computational cost. Gooding’s
algorithm is considered to be the most accurate and efficient Lambert solver for
many people.

2.5.4 Izzo’s Lambert’s Problem

Figure 2.15: Geometry of Lambert’s Problem (Conte, 2014)

The development of Izzo’s method (2014) in solving Lambert’s problem is inspired
by Lancaster and Blanchard’s solution. With this relation, Izzo re-derive some of
their equation in hope to explain his idea. Parameter λ is being considered.

sλ =
√
r1r2 cos(θ

2
)

Because of the relation between the line chord and semiperimeter, we could re-write
λ as:

λ2 =
s− c

s

with the parameter λ ∈ [−1, 1] becomes positive when θ ∈ [0, π] and becomes
negative while θ ∈ [π, 2π].(Izzo, 2015)
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Later, Izzo introduce a new time of flight for a non dimensional, which is:

T =
1

2

√
µ

a3m
(t2 − t1)

=

√
2
µ

s3
(t2 − t1)

Izzo stated that there is one specific advantage by using λ and T which comes
from the fact that T itself is a function of a/am and the only λ. All of this means,
Izzo’s goal is to make a simpler equation in solving Lambert’s problem.

In Lancaster and Blanchard’s equation, sometimes it is not a good step to
alter the time of flight with a/am, thus Izzo introduce new quantities to avoid the
problem.

x =

cos α
2

cosh α
2

, y =

cos β
2

cosh β
2

(2.42)

which could also be:
√
1− x2 = sin α

2√
x2 − 1 = sinh α

2

,

λ
√
1− x2 = sin β

2

λ
√
x2 − 1 = sinh β

2

(2.43)

and also y =
√
1− λ2(1− x2). From the equation above, the auxiliary angles φ

and ψ with relation to x, we could get:

cosφ = xy − λ(1− x2)

coshφ = xy + λ(x2 − 1)
,

sinφ = (y + xλ)
√
1− x2

sinhφ = (y + xλ)
√
x2 − 1

(2.44)

cosψ = xy + λ(1− x2)

coshψ = xy − λ(x2 − 1)
,

sinψ = (y − xλ)
√
1− x2

sinhψ = (y − xλ)
√
x2 − 1

(2.45)
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and from both of this equation, the time of flight equation is produced which is
valid for parabolic, hyperbolic, and elliptic cases:

T =
1

1− x2

(
ψ +Mπ√
|1− x2|

− x+ λy

)
(2.46)

Izzo specifically noted that M must equal to zero (M = 0) for hyperbolic and
parabolic cases.

Izzo’s equation time of flight which is Eq. 2.46, will encounter a loss of precision
due to numerical cancellation in the single revolution case. It happened because
x ≈ 0 where the both of 1−x2 and ψ will be zero. To overcome this problem, Izzo
uses Battin’s elegant result setting:

η = y − λx

S1 =
1

2
(1− λ− xη)

Q =
4

3
1F2(3, 1,

5

2
, S1)

2T = η3Q+ 4λη

(2.47)

1F2(a, b, c, d) is the Gaussian function or it is the ordinary hyper-geometric
function which could be found by straightly computing the hyper-geometric series.
Then Izzo did a study with the parabolic case by subtituting x = 1 and y = 1, into
Eq. 2.47 and obtain the new time of flight equation for single revolution:

T(x=1) = T1 =
2

3
(1− λ3) (2.48)

Izzo proposed the idea to derives the formulas of the time of flight which will
be available with all cases including single and multiple revolutions, elliptical and
hyperbolic.
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(1− x2)
dT

dx
= 3Tx− 2 + 2λ3

x

y

(1− x2)
d2T

dx2
= 3T + 5x

dT

dx
+ 2(1− λ2)

λ3

y3

(1− x2)
d3T

dx3
= 7x

d2T

dx2
+ 8

dT

dx
− 6(1− λ2)λ5

x

y5

(2.49)

But this formula is not valid when λ2 = 1, x = 0 and x = 1. By applying de
I’Hôpital’s rule, this could overcome the problem and have a new formula for the
parabolic case:

dT

dx

∣∣∣∣
x=1

=
2

5
(λ5 − 1) (2.50)

This time of flight equation brings a great advantage which is operates in the
low computational cost of computing T . Because of Izzo’s solver emphasizes on the
Lancaster-Blanchard variable x using a Hauseholder iteration scheme feeded by a
simple initial guess, it makes Izzo’s solver simpler to implement.
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CHAPTER 3
RESEARCH METHODOLOGY

Research methodology in this study is divided by several parts that consist of
understanding the definition of trajectory designs and how to implement them,
Hohmann and bi-elliptical Hohmann transfer, both Lambert’s problem and Izzo’s
Lambert problem, and phyton.

Lambert Prob-
lem Algorithm

Numerical Tools

Utilization of Izzo’s
Solver To Achieve

Optimum Total ∆v

Analysis & Discussion

Problem
Statement

Report

Figure 3.1: Steps taken during research study
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Before jumping to the main focus of this study, which is Lambert’s problem,
understanding the fundamental of the theoretical aspect is a must to do. Start from
reading the two-body problem (which consist of the equation of relation motion
and the theory of eccentricity that related to the shape of orbits), finding the
importance of studying the orbital elements and state vector, study how to use
python to implement various of the algorithm until reaching Lambert’s problem
itself. Figure 3.1 shows a chart or diagram which explains the overview steps that
are taken during the research study.

3.1 Problem Statement

There are several ways to launch a satellite. Some have to be placed in LEO (Low
Earth Orbit), and several launch services needed their satellites to be placed in
GEO (Geosynchronous Equatorial Orbit). In general, when a satellite launched
into space, usually, it is placed in LEO by the rocket launcher service before it is
then maneuvered into GEO. And this statement is the target of this research study.

There are several techniques that can be utilized to design the orbit transfer
from LEO to GEO. Hohmann transfer and bi-elliptical Hohmann transfer are some
of the examples. But, during this research study, one of the techniques that will
be the main focus is by using Lambert’s Problem.

The main focus in this research project is finding the amount of ∆v both at
the initial and the final positions required to achieve the transfer trajectory, which
may vary with the variation of initial orbital elements. And in the end, Total ∆v
could be found.
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3.2 Lambert Problem Algorithm

In this research study, it has two main focuses on the development of Lambert’s
problem. There are universal variables and the Izzo’s Lambert problem. Each
development has a different theoretical approach, but in the end, they have the
same goals.

The purpose of this section is to show a summary algorithm of the equation
presented by each developer. The first one is the algorithm for universal variables
by Bate, Mueller, and White.

Algorithm 1 Universal Variables (Vallado, 2013)
cos(∆ν) = r⃗0·r⃗

r0r

sin(∆v) = tm
√

1− cos2(∆v)

A = tm
√
rr0(1 + cos(∆ν)) Could not compute orbitif A = 0.0

If A ̸= 0.0, then continue;
ψn = 0.0 ; c2 =

1
2

; c3 =
1
6

ψup = 4π2 ; ψlow = −4π
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Looping Process

Start Looping

yn = ro + r + A(ψnc3−1)√
c3

A > 0.0; yn < 0.0 re-adjust ψlow until yn = 0.0

xn =
√

yn
c2

∆tn =
x3nc3+A

√
yn√

µ

∆tn−∆t
∆t

< 10−6 Stop Looping

ψn ⇐ ψn+1

∆tn ≤ ∆t reset ψlow ⇐ ψn

reset ψup ⇐ ψn ψn+1 =
ψup+ψlow

2

yes

no

yes

no

yes

no
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It is important to note that we need to configure the
value of c2 and c3 when ψn change to ψn+1. then:

f = 1− yn
r0

ġ = 1− yn
r

g = A
√

yn
µ

v⃗0 =
r⃗−f r⃗0
g v⃗ = ġr⃗−r⃗0

g

The end of the algorithm

The second algorithm, which is the main target of this study research is about
Izzo’s Lambert Problem.

Algorithm 2 Izzo’s Lambert Problem (Izzo, 2015)
Parameters: r1r1r1 = [r11, r12, r13], r2r2r2 = [r21, r22, r23], t, and µ

Require: t > 0, µ > 0

c = r2 − r1c = r2 − r1c = r2 − r1

c = |ccc|, r1 = |c1c1c1|, r2 = |c2c2c2|

s = 1
2
(r1 + r2 + c)

îiir,1 =
r1r1r1
r1
, îiir,2 =

r2r2r2
r2

îiih,initial = îiir,1 × îiir,2

îiih =
îiih,initial

|̂iiih,initial|

λ2 = 1− c/s, λ =
√
λ2

IF r11r22 − r12r21 < 0 λ = −λ ; îiih = −îiih
then

îiit,1 = îiih × îiir,1 îiit,2 = îiih × îiir,2

T =

√
2µ

s3
t

xlist, ylist = findxy(λ, T )
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Cont...

findxy(λ, T ): by computing all x, y for single revolution solution

Requirement: |λ| < 1, T > 0

Mmax = floor(T/π)

T00 = arccosλ+ λ
√
1− λ2

IF T < T00 +Mmaxπ and Mmax > 0

start Halley iterations from x = 0, T = T0 and find Tmin(Mmax)

then

IF Tmin > T

Mmax =Mmax − 1 end if

then

end if
Single Revolution

T0 = arccosλ+ λ
√
1− λ2 +Mπ

T1 =
2

3
(1− λ3)

compute x0, where :

x0 =

(
T0
T

) 2
3

− 1, T ≥ T0

x0 =
5

2

T1(T1 − T )

T (1− λ5)
+ 1, T < T1

x0 =

(
T0
T

)log2

(
T1
T0

)
− 1, T1 < T

γ =

√
µs

2
, ρ =

r1 − r2
c

, σ =
√
(1− ρ2)
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Cont...

for each x, y in xlist, ylist

Vr,1 = γ[(λy − x)− ρ(λy + x)]/r1

Vr,2 = −γ[(λy − x) + ρ(λy + x)]/r2

Vt,1 = γσ(y + λx)/r1

Vt,2 = γσ(y + λx)/r2

v1 = Vr,1îiir,1 + Vt,1îiit,1

v2 = Vr,2îiir,2 + Vt,2îiit,2

end for

do

3.3 Numerical Tools

The next step to be taken is to select a numerical tool. There are plenty of tools that
could be used to design such algorithms. It is just a matter of preference. During
this research study, choosing to use Atom or Spyder IDE (Anaconda Python) is
the best option.

Using these tools makes it possible to create a self-generated simulation with
the correct algorithm and data. In this research study, I try to test several topics
related to Lambert’s problem solver and familiarize myself with designing a proper
algorithm.

Below are two of the examples of the topics that I’ve been working on this past
research study. These two examples explain the overview look of how to design a
proper algorithm.

3.3.1 Hohmann & Bi-elliptical Transfer

import numpy as np
# Earth Properties (JGM 2)
ER = 6378.1363 # Earth's radius (km)
MIU_E = 3.986004415e5 # km^3/s^2 (earth)
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DU = ER # Distance Unit in km
TU = np.sqrt(DU**3 / MIU_E) # Time Unit in second
MIU = 1 # Normlaized GM
def hohmann(ri, rf):

"""
Performs Hohmann transfer between two circular orbits.
Keyword Arguments:
ri -- radius of initial orbit
rf -- radius of final orbit
"""
at = (ri + rf) / 2

vi = np.sqrt(MIU / ri)
vf = np.sqrt(MIU / rf)
vt_a = np.sqrt(2 * MIU / ri - MIU / at)
vt_b = np.sqrt(2 * MIU / rf - MIU / at)

delta_v_a = vt_a - vi
delta_v_b = vf - vt_b
delta_v = (np.abs(delta_v_a) + np.abs(delta_v_b)) * (ER / TU) # km/s

tau_t = (np.pi * np.sqrt(at ** 3 / MIU)) * (TU / 3600) # hours
return delta_v, tau_t

def bielliptic(ri, rb, rf):
"""
Perform bielliptic transfer.
Keyword Arguments:
ri -- radius of initial orbit
rf -- radius of final orbit
rb -- radius of transfer orbit
"""
at1 = (ri + rb) / 2
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at2 = (rb + rf) / 2

vi = np.sqrt(MIU / ri)
vt1_a = np.sqrt(2 * MIU / ri - MIU / at1)
vt1_b = np.sqrt(2 * MIU / rb - MIU / at1)
vt2_b = np.sqrt(2 * MIU / rb - MIU / at2)
vt2_c = np.sqrt(2 * MIU / rf - MIU / at2)
vf = np.sqrt(MIU / rf)

delta_v_a = vt1_a - vi
delta_v_b = vt2_b - vt1_b
delta_v_c = vf - vt2_c

delta_v = (np.abs(delta_v_a) + np.abs(delta_v_b) + np.abs(delta_v_c))
* (ER / TU) # km/s

tau_t = (np.pi * np.sqrt((at1 ** 3) / MIU) +
np.pi * np.sqrt((at2 ** 3) / MIU)) * (TU / 3600) # hours

return delta_v, tau_t

This algorithm is based on all of the equations in Ch. 2.2.1 and Ch. 2.2.2.
Except, in Ch. 2.2.2, there are equations for Ratio comparison, which will be
explained after.

The algorithm present above shows that both Hohmann transfer and bi-elliptical
Hohmann transfer have the same goals, which are finding ∆v and time of flight, τ .

3.3.2 Hohmann Transfer vs Bielliptical Transfer

import numpy as np
import matplotlib.pyplot as plt
from matplotlib import rc
rc('text', usetex=True)
plt.style.use('ggplot')
R = np.linspace(2, 75, num=10000)
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RS = [15.58, 40, 60, 100, 200]
def hohmann_ratio(R):

"""
Calculate the ratio of delta v for Hohmann Transfer
Keyword Arguments:
R -- radius ratio, rf / ri
"""
ratio = (((1 - (1 / R)) * np.sqrt(2 * R / (1 + R))) +

(np.sqrt(1 / R)) - 1)
return ratio

def bielliptical_ratio(RS):
"""
Calculate the ratio of delta v for Hohmann Transfer
Keyword Arguments:
R -- radius ratio, rf / ri
Rs -- new radius defination, rb / ri
"""
x = np.sqrt(2 * RS / (1 + RS)) - 1
y = np.sqrt(2 / RS) * (np.sqrt(1 / (1 + RS / R)) -

np.sqrt(1 / (1 + RS)))
z = np.sqrt(1 / R) * (np.sqrt(2 * RS / (R + RS)) - 1)

ratio = np.abs(x) + np.abs(y) + np.abs(z)
return ratio

fig = plt.figure(figsize=(10, 7))

# special points
xcoords = [11.94, 15.58]
ycoords = [0.6, 0.68]

for (xc, yc) in zip(xcoords, ycoords):
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plt.axvline(x=xc, ls='--', alpha=0.4)
plt.text(xc - 0.5, yc, str(xc))

plt.plot(R, hohmann_ratio(R), 'b', label='Hohmann')
for ratio in RS:

plt.plot(R, bielliptical_ratio(ratio), label='R*=' +
str(ratio))

plt.xlabel(r"$\frac{r_f}{r_i}$")
plt.ylabel(r"$\frac{\Delta v}{v_i}$")
plt.legend(loc=0)
plt.grid(True)
plt.show()
plt.savefig("HohmanVsBieliptic.pdf", dpi=600)

This algorithm shows how Eq. 2.17 interacts with Eq. 2.18 and Eq. 2.19, and
creates a comparison between the two transfers. Figure 3.2 shows the result of the
algorithm above.

And as I mentioned in the previous chapter (Ch. 2.2.2), getting the result of
this comparison is essential to see which transfer is the most useful. But each
of these transfers has its advantage, and to choose one of them is solely based
on the individual needs of every organization involved in exploring the orbital
maneuvering.

3.4 Calculation

In this research study, the main goal is to find ∆v for all the possible inputs. Those
inputs could be based on the initial or final radius (∆v = f(r)), the time of flight
(∆v = f(∆t) or ∆v = f(τ)), or the launch site from various available launcher
(∆v = f(launchsite)).

In 3.3.1, explain the algorithm which shows the design algorithm of Hohmann
and bi-elliptical transfer. To solve this algorithm, the neccessary input outside this
algorithm are initial and final radius. But in bi-elliptical transfer, the algorithm
needs another input which is radius in point b (see Fig. 2.6).
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Figure 3.2: Comparison between Hohmann Transfer and Bi-
elliptical Transfer

Below is an example of the inputs for algorithm in 3.3.1:

#Example
io = 191.34411 #Initial Orbit altitude (km)
bo = 47836.00 #Bi-elliptical transfer altitude (km)
fo = 35781.35 #Final Orbit altitude (km)

ri = (io + ER) / ER #Initial orbit radius in Canonical unit
rb = (bo + ER) / ER #Bi-elliptical radius in Canonical unit
rf = (fo + ER) / ER #Finalorbit radius in Canonical unit

Once these parameters entered into the algorithm, the numerical tools (atom
or spyder IDE) will run the programming and quickly shows the result for the total
change in velocity, ∆v, and time of flight, τ .
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If the complete algorithm above runs correctly, the result of Hohmann and bi-
elliptical transfer will be shown in Fig. 3.3. The orange highlight indicate the
velocity change, ∆v, while the green highlight indicates the time of flight, τ .

Figure 3.3: Result algorithm of Hohmann Transfer and Bi-
elliptical Transfer

*It is important to note that the unit for the velocity change, ∆v, is in km/s and
for the time of flight, τ , is in hours.

3.5 Analysis & Discussion

This section will discuss how the result of the research goes. It could be a success,
or it could be a disaster. The analysis may go through the process of comparing
the result with the theoretical aspects. Is the result has the same or similar or
utterly different answer will be shown in the result.

This analysis may also discuss the possibility of how the ∆v is produced. The
result of the ∆v might be the optimum value, or it might not, and this assumption
will be proven in this section. The discussion of how ∆v is interacting with the
time of flight will also be written.

3.6 Report

Writing this dissertation is the final step of this research study. This dissertation
is a summary of what I have been doing during the research study. Everything
that I learned from a scratch into the final product is written in here and well
documented.
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This dissertation is written with a clear purpose. It will be submitted and
presented to a particular audience though not all of the theoretical aspects of this
report will be presented during the defence. The information in this report will
make the audience who are not familiar with this subject understand the purpose
behind this research study.

This report also addresses the problems or issues behind the research subject.
There is some specific requirement to complete this dissertation provided by my
University that must be followed.
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CHAPTER 4
RESULTS AND DISCUSSIONS

4.1 Proof: Izzo’s Lambert Problem algorithm are
The Same as Universal Variables algorithm

By conducting several examples between Izzos Lambert problem algorithm and
Universal variables algorithm, the result between the two certainly is the same.
Table 4.1 shows the proof of it (see Appendix B for both Izzo’s Lambert problem
and universal variables algorithms).

Comparison Result between Izzo’s solver and Universal Variables
Initial Parameters Izzo’s Solver Universal Variable

r0 220i+ 0j + 0k v0 53.31i+ 26.74j + 0k v0 53.31i+ 26.74j + 0k
r 1000i+2255j+0k v −8.61i− 13.52j + 0k v −8.61i− 13.52j + 0k
∆t 4560 seconds
r0 150i+ 50j + 0k v0 54.60i+ 44.64j + 0k v0 54.60i+ 44.64j + 0k
r 500i+1500j+0k v −8.94i− 18.91j + 0k v −8.94i− 18.91j + 0k
∆t 4560 seconds
r0 1000i+225j+0k v0 25.22i+ 8.697j + 0k v0 25.22i+ 8.697j + 0k
r 2545i+1500j+0k v −12.80i−6.357j+0k v −12.80i−6.357j+0k
∆t 4560 seconds

Table 4.1: Comparison Result between Izzo’s Solver and Universal
Variable

Following the above information (Table 4.1), it is evident that Izzos Lambert
problem algorithm and universal variable algorithm produce the same result. But
between one of them have the one advantage that people will take into consideration
when using the algorithm, which is the speed. In theory, Izzos algorithm is, in fact,
the fastest one. And during my dissertation, by running a command, the argument
could be proven.
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By running it using Ubuntu 20.04.1 LTS with 7.6 GiB memory and Intel®
Core™ i7-6500U CPU @ 2.50GHz × 4 processor, the next step is to time it
statistically. In this example, the example number two from Table 4.1 is used.

• Izzo’s Solver (In terminal, type: %timeit -n 10000 %run v0_v.py)
Result: 0.609 ms ± 2.68 µs per loop (mean ± std. dev. of 7 runs, 10000 loops
each)

• Universal Variable (In terminal, type: %timeit -n 10000 %run Univer-
sal.py)
Result: 1.22 ms ± 4.77 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)

The -n 10000 represents 10000 loops, while it is set by default to do 7 runs each
time %timeit -n 10000 %run (type your file.py) being run. From the result, we
could se the average time of the running process takes. And it is safe to say that
Izzo’s solver is roughly 2 times faster than universal variables, in which the theory
has mentioned that Izzo’s is the faster among others.

4.2 Relation of ∆v between Lambert’s Problem
and Hohmann Transfer

During my thesis project, I found out throughout the process of finding the ∆v

using Izzo’s solver that we could also find the result for ∆v of Hohmann transfer.
Figure 4.1 shows that the ∆vmin from Izzo’s solver plot is, in fact, the ∆v of
Hohmann Transfer.

Figure 4.1 is a plot produced using Izzo’s solver. The minimum ∆v (∆vmin)
could also be said as the ∆v of Hohmann Transfer. By definition, Hohmann transfer
requires a small amount of fuel consumption because Hohmann transfer is the most
energy-efficient transfer. The ∆v of Hohmann transfer is relatively smaller than
others solvers. But it requires a longer time of flight to achieve the final destination.
That is why we could draw this assumption by looking at Figure 4.1.
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Figure 4.1: Relation Between Izzo’s Lambert Problem and
Hohmann Transfer. (See Appendix B for the algorithm)

In Chapter 3, especially in 3.3.1, shows the algorithm for Hohmann transfer.
And by running the algorithm of Izzo’s Lambert problem, the r0 and r could be
found (Figure 4.2), then transfer it to the Hohmann transfer algorithm.

Figure 4.2: r0 & r value from Izzo’s Solver Result

By running the Hohmann transfer algorithm using the parameters above, the result
(Figure 4.3) will be the same as the minimum ∆v (Figure 4.1) from Izzo’s Lambert
problem solver.
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Figure 4.3: Initial DV as the Result for ∆v of Hohmann Transfer

4.3 Result of Izzo’s Solver

Figure 4.4 is one of the example plot taken during this period of time which initial
parameters i0 = 0◦. With the help of classical orbital elements (COE) as the initial
and final orbit parameters, we could find the r0 and r that leads in finding the
total ∆v. In setting both the initial and final orbit, eccentricity (e), altitude (h
in km), semi-major axis (a in km), semiparameter (p in km), inclination (i in °),
right ascension of the ascending node (Ω in °), argument of perigee (ω in °), and
true anomaly (ν in °) are needed.
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Figure 4.4: Izzo’s Solver with i0 = 0°
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Throughout this process, all simulation in the final orbit (GEO) is using the
same parameters with altitude is 35,786 km, true anomaly is set for 180°, and all
other parameters are zero.

From Figure 4.4, it shows that in the first 5 hours, the total ∆v is descending
from the first tipping point. The first point as mentioned in the plot is equal to
4.76734211 km/s. Then, it starts to rise gradually with the highest total ∆v is
around 5.2 km/s.

4.3.1 The Variation of Result Using Izzo’s Solver
In this section, it will show how the variation of initial orbital elements could affect
the result of Total Delta-V.

Change of Inclination, i0
The first change of initial orbital elements is the inclination. The inclination is
vary start from 0◦ to 180◦ into one plot.
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Figure 4.5: Inclination change vary from i0 = 0◦ to i0 = 180◦
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From the information gathered in Figure 4.5, it is possible to state that when
inclination change into a wider angle, the Total ∆v gets higher.

i0 ↑, ∆vtotal ↑

Having i0 = 0◦ could save a lot of Total ∆v and it is wisable to choose it rather
then the other angles. The ∆vmin is approximately around 6 km/s with 3.5 hours
time-of-flight, in which the lowest among others. The highest is approximately
around 19 km/s of Total ∆vmin and 4.5 hours of time-of-flight with i0 = 180◦.

Change of Right Ascension of The Ascending Node, Ω0

The second simulation is by changing the initial orbital elements of Right Ascension
of The Ascending Node. The change is vary from 0◦ to 180◦ and produced it into
one plot.
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Figure 4.6: Right Ascension of The Ascending node change vary
from Ω0 = 0◦ to Ω0 = 180◦
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Different from inclination change, Figure 4.6 shows the changes in Ω0 is not steadily
rising. When Ω0 change from Ω0 = 0◦ to Ω0 = 60◦, the changes is up and down.
But when it reach 80◦ the highest Total Delta-V, it start decreasing gradually.

The value of Ω0 = 0◦ is the same as i0 = 0◦ because there is no change in intital
orbit. But if we look at the second lowest Total ∆vmin, it is not 20◦ angle like
in inclination variation plot, but rather it’s 60◦ angle. The Total ∆vmin it self is
higher, approximately reaching 9 km/s, while for i0 = 20◦, the Total ∆vmin is only
around 7.5 km/s.

Change of Argument of Perigee, ω0

The third simulation is by changing the initial orbital elements of Argument of
Perigee, ω0. The change is vary from 0◦ to 180◦ and produced it into one plot.
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Figure 4.7: Argument of Perigee change vary from ω0 = 0◦ to
ω0 = 180◦
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Same as inclination, the change of ω0 makes the Total Delta-V higher when the
angle become wider.

ω0 ↑, ∆vtotal ↑

As mention in previous simulation (change in Ω0), the value of Total ∆vmin at 0◦

is the same that approximately around 6 km/s and 3.5 hours of time-of-flight. But
the second lowest Total ∆vmin is at 20◦ angle that approximately almost reaching 7
km/s. The unique difference from the first two simulation is that the time-of-flight
don’t look any different when the angle become wider. It stay at around 3.5 hours
of time-of-flight when it reach the Total ∆vmin.

Change of Altitude, h0

The fourth and last simulation is by changing the initial orbital elements of altitude,
h0. The change is vary from 220 km to 400 km and produced it into one plot.
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Figure 4.8: Altitude change vary from h0 = 220km to h0 = 440km
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Figure 4.8 shows the variation of Total ∆v with respect to Total ∆v at 220 km
altitude (h0). It’s also means that h0 = 220 km acts as the benchmark to others.
From the plot, it could give a conclusion that placing the initial altitude, h0, has a
big impact on how to save Total ∆v. Because,

h0 ↑, ∆vtotal ↓

Placing at h0 = 400 km that in this simulation is farthest altitude, could save
roughly around 0.1 km/s or 100 m/s of Total ∆v.

4.4 Simulation Parameters

Simulation parameters used in the change of i0, Ω0, ω0, and h0.

Initial Orbit LEO (Change in i0)
e h (km) a (km) p (km) i Ω ω ν

Simulation 1 0 220 h+ ER a(1−e2) 0° 0° 0° 0°
Simulation 2 0 220 h+ ER a(1−e2) 20° 0° 0° 0°
Simulation 3 0 220 h+ ER a(1−e2) 40° 0° 0° 0°
Simulation 4 0 220 h+ ER a(1−e2) 60° 0° 0° 0°
Simulation 5 0 220 h+ ER a(1−e2) 80° 0° 0° 0°
Simulation 6 0 220 h+ ER a(1−e2) 100° 0° 0° 0°
Simulation 7 0 220 h+ ER a(1−e2) 120° 0° 0° 0°
Simulation 8 0 220 h+ ER a(1−e2) 140° 0° 0° 0°
Simulation 9 0 220 h+ ER a(1−e2) 160° 0° 0° 0°
Simulation 10 0 220 h+ ER a(1−e2) 180° 0° 0° 0°

Table 4.2: Initial Orbit Parameters LEO,
change in i0 with ER = 6378 km
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Initial Orbit LEO (Change in Ω0)
e h (km) a (km) p (km) i Ω ω ν

Simulation 1 0 220 h+ ER a(1−e2) 0° 0° 0° 0°
Simulation 2 0 220 h+ ER a(1−e2) 0° 20° 0° 0°
Simulation 3 0 220 h+ ER a(1−e2) 0° 40° 0° 0°
Simulation 4 0 220 h+ ER a(1−e2) 0° 60° 0° 0°
Simulation 5 0 220 h+ ER a(1−e2) 0° 80° 0° 0°
Simulation 6 0 220 h+ ER a(1−e2) 0° 100° 0° 0°
Simulation 7 0 220 h+ ER a(1−e2) 0° 120° 0° 0°
Simulation 8 0 220 h+ ER a(1−e2) 0° 140° 0° 0°
Simulation 9 0 220 h+ ER a(1−e2) 0° 160° 0° 0°
Simulation 10 0 220 h+ ER a(1−e2) 0° 180° 0° 0°

Table 4.3: Initial Orbit Parameters LEO,
change in Ω0 with ER = 6378 km

Initial Orbit LEO (Change in ω0)
e h (km) a (km) p (km) i Ω ω ν

Simulation 1 0 220 h+ ER a(1−e2) 0° 0° 0° 0°
Simulation 2 0 220 h+ ER a(1−e2) 0° 0° 10° 0°
Simulation 3 0 220 h+ ER a(1−e2) 0° 0° 20° 0°
Simulation 4 0 220 h+ ER a(1−e2) 0° 0° 30° 0°
Simulation 5 0 220 h+ ER a(1−e2) 0° 0° 40° 0°
Simulation 6 0 220 h+ ER a(1−e2) 0° 0° 50° 0°
Simulation 7 0 220 h+ ER a(1−e2) 0° 0° 60° 0°
Simulation 8 0 220 h+ ER a(1−e2) 0° 0° 70° 0°
Simulation 9 0 220 h+ ER a(1−e2) 0° 0° 80° 0°
Simulation 10 0 220 h+ ER a(1−e2) 0° 0° 90° 0°

Table 4.4: Initial Orbit Parameters LEO,
change in ω0 with ER = 6378 km
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Initial Orbit LEO (Change in h0)
e h (km) a (km) p (km) i Ω ω ν

Simulation 1 0 220 h+ ER a(1−e2) 0° 0° 0° 0°
Simulation 2 0 240 h+ ER a(1−e2) 0° 0° 0° 0°
Simulation 3 0 260 h+ ER a(1−e2) 0° 0° 0° 0°
Simulation 4 0 280 h+ ER a(1−e2) 0° 0° 0° 0°
Simulation 5 0 300 h+ ER a(1−e2) 0° 0° 0° 0°
Simulation 6 0 320 h+ ER a(1−e2) 0° 0° 0° 0°
Simulation 7 0 340 h+ ER a(1−e2) 0° 0° 0° 0°
Simulation 8 0 360 h+ ER a(1−e2) 0° 0° 0° 0°
Simulation 9 0 380 h+ ER a(1−e2) 0° 0° 0° 0°
Simulation 10 0 400 h+ ER a(1−e2) 0° 0° 0° 0°

Table 4.5: Initial Orbit Parameters LEO,
change in h0 with ER = 6378 km

Final Orbit LEO
e h (km) a (km) p (km) i Ω ω ν

All Simulation 0 35,786 h+ ER a(1−e2) 0° 0° 0° 120°

Table 4.6: Final Orbit Parameters GEO with ER = 6378 km

4.5 Remarks on How Total ∆v Reduction Affect
The Launch Cost

Using the Tsiolkovsky’s rocket equation, it is possible to calculate how much pay-
load or mass per-satellite could be save with Total ∆v reduction when travelling
from LEO to GEO.
Tsiolkovsky’s equation:

∆v = veln
m0

mf

(4.1)

Where,

59/89



A STUDY OF TRAJECTORY DESIGN FROM LEO TO GEO
USING IZZO’S LAMBERT-SOLVER

∆v The maximum change of velocity reduction
ve Ispg0

Isp Specific impulse
g0 Standard gravity (9.80665 m2/s)

m0 The initial mass
mf The final mass (mass after the Total ∆v reduction)

Table 4.7: Tsiolkovsky’s equation Parameters Explaination

The result from the variation of Total ∆v from LEO to GEO due to altitude
change (h0) is the one taken for this calculation in which the Total ∆v reduction
value is around 0.1 km/s.

Choosing the parameter of ∆v = 0.1 km/s, with the help of initial BRIsat
(Page, 2020) mass and the Isp of apogee kick motor (Isp = 282.9s), found:

Initial Final
mass 3540 kg 3414.684 kg
Launch Cost ($ 30,000 per kg) $ 106,200,000 $ 102,440,520

Table 4.8: New Payload / Mass & Cost Travel From LEO to GEO

Table 4.8 gives the number that needed to analyze how much payload or mass
and cost could be save with only 0.1 km/s of Total ∆v reduction.

Payload Savings: 125.316 kg
Launch Cost Savings: $ 3,759,480

Table 4.9: Payload and Cost savings with only 0.1 km/s of Total
∆v reduction
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CHAPTER 5
SUMMARY, CONCLUSION,

RECOMMENDATION

5.1 Summary

To do a transfer orbit from LEO to GEO is beneficial since, in GEO, it moves in the
same direction as Earth’s rotation under the same period. But placing it in GEO
is very expensive in terms of the launch cost. By reducing the total ∆v, it will give
a lower launch cost or the satellite could bring more payload. While considering
it, still, the main focus of this thesis was to do a transfer orbit, in which Lambert’s
problem is the one used. Lambert’s problem uses only two impulses to complete the
transfer and can be considered in a single revolution or multiple revolutions. There
are many techniques to solve Lambert’s problem. One of which is used in this thesis
as the main focus was Izzo’s solver. Based on numerical experiments in this thesis,
Izzo’s algorithm was the fastest algorithm with only two iterations compared to
the universal variables technique, which requires more than two iterations. With
the correct time of flight and varying the initial orbital elements, it was possible to
know how the total ∆v affected while the final orbit remained constant.

5.2 Conclusion

In conclusion, it has been a success in terms of implementing Lambert’s problem.
Izzo’s algorithm and Lambert’s universal variable have been compared and the
results were satisfying. Izzo’s algorithm produced a shorter time, which is based
on the simulation taken (Chapter 4) during this thesis project that Izzo’s algorithm
is roughly 2 times faster (computational time) than Universal Variables.
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Izzo’s solver has also been used where one of the initial orbital elements varies.
Throughout the simulation, the results were rewarding. The variation of the initial
orbital elements like the inclination (i0), right ascension of the ascending node (Ω0),
argument of perigee (ω0), and altitude (h0) could change the result of Total ∆v.
Choosing to vary the initial altitude (h0) was a good example to show that by
reducing the total ∆v, it is possible to get a lower launch cost. Placing it at 400
km (the farthest altitude in this thesis) could save roughly around 0.1 km/s or 100
m/s of Total ∆v. It may look small, but with only 0.1 km/s reduction, it could
reduce the total launch cost up to 3,759,480 USD to travel from LEO to GEO.

5.3 Recommendation

For the future project, it would be nice to continue this project with the focus
on multiple revolutions following the one done in this thesis: a single revolution.
While multiple revolutions are an idea, students could also focus on how multiple
impulses (n > 2) affect the ∆v. Another idea that could be available is by varying
not only one initial orbital elements like taken on this thesis, but with all initial
orbital elements.
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Appendix A: Izzo’s Solver Algorithm

In order to produce all the figures in Chapter 4, creating the python code below
is important. Each python code (per number) need to be created in the same
folder with seperate python files (.py).
The main Izzo’s solver code are:

1. Jit file (jit.py);

1 import inspect
2 import warnings
3

4 def ijit(first=None, *args, **kwargs):
5 """
6 Identity JIT, returns unchanged function.
7 """
8 def jit_(f):
9 return f

10 if inspect.isfunction(first):
11 return first
12 else:
13 return jit_
14 try:
15 import numba
16

17 jit = numba.njit
18 except ImportError:
19 warnings.warn(
20 "Could not import numba package"
21 "Functions will work properly but the CPU intensive"
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22 "algorithms will be slow. Consider installing numba to"
23 "boost performance."
24 )
25 jit = ijit

2. Hypergeometric function 2F1(3, 1, 5/2, x) file (hyperf.py);

1 import numpy as np
2 from numba import jit
3 # from .jit import jit
4

5 @jit
6 def hyp2f1b(x):
7 """
8 Hypergeometric function 2F1(3, 1, 5/2, x)
9 """

10 if x >= 1.0:
11 return np.inf
12 else:
13 res = 1.0
14 term = 1.0
15 ii = 0
16 while True:
17 term = term * (3 + ii) * (1 + ii) /
18 (5 / 2 + ii) * x / (ii + 1)
19 res_old = res
20 res += term
21 if res_old == res:
22 return res
23 ii += 1

3. Izzo’s solver file (solver.py);

1 from numba import jit
2 import numpy as np
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3 from hyperf import hyp2f1b
4 import warnings
5 warnings.filterwarnings('ignore')
6 @jit
7 def izzo(miu, r1, r2, t, M, numiter, rtol):
8 """
9 Applie izzo algorithm to solve Lambert's problem.

10

11 Parameter:
12

13 miu : Gravitational constant
14 r1 : Initial position vector
15 r2 : Final position vector
16 t : Time of flight between both positions
17 M : Number of revolutions
18 numiter : Number of iterations
19 rtol : Error tolerance
20

21 Goals:
22

23 v1 : Initial velocity vector
24 v2 : Final velocity vector
25 """
26 # Precondition
27 assert t > 0
28 assert miu > 0
29 # Check collinearity of r1 and r2
30 if np.all(np.cross(r1, r2) == 0):
31 raise ValueError("Lambert solution cannot be computed\
32 for collinear vectors")
33 # chord
34 c = r2 - r1
35 c_norm, r1_norm, r2_norm = np.linalg.norm(c),
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36 np.linalg.norm(r1),
37 np.linalg.norm(r2)
38

39 # semiperimeter
40 s = (r1_norm + r2_norm + c_norm) * 0.5
41

42 i_r1, i_r2 = r1 / r1_norm, r2 / r2_norm
43 i_h = np.cross(i_r1, i_r2)
44 i_h = i_h / np.linalg.norm(i_h)
45

46 # ll is lambda
47 ll = np.sqrt(1 - min(1.0, c_norm / s))
48

49 if i_h[2] < 0:
50 ll = -ll
51 i_h = - i_h
52

53 # from Poliastro
54 i_t1, i_t2 = np.cross(i_h, i_r1), np.cross(i_h, i_r2)
55

56 # Non dimensional time of flight
57 T = np.sqrt(2 * miu / s ** 3) * t
58

59 # Find x & y list
60 xy = find_xy(ll, T, M, numiter, rtol)
61

62 # Reconstruct
63 gamma = np.sqrt(miu * s / 2)
64 rho = (r1_norm - r2_norm) / c_norm
65 sigma = np.sqrt(1 - rho ** 2)
66

67 for x, y in xy:
68 V_r1, V_r2, V_t1, V_t2 = reconstruct(
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69 x, y, r1_norm, r2_norm, ll, gamma, rho, sigma
70 )
71 v1 = V_r1 * i_r1 + V_t1 * i_t1
72 v2 = V_r2 * i_r2 + V_t2 * i_t2
73 yield v1, v2
74 @jit
75 def reconstruct(x, y, r1, r2, ll, gamma, rho, sigma):
76 """
77 Reconstruct solution velocity vectors.
78 """
79 V_r1 = gamma * ((ll * y - x) - rho * (ll * y + x)) / r1
80 V_r2 = -gamma * ((ll * y - x) + rho * (ll * y + x)) / r2
81 V_t1 = gamma * sigma * (y + ll * x) / r1
82 V_t2 = gamma * sigma * (y + ll * x) / r2
83 return [V_r1, V_r2, V_t1, V_t2]
84 @jit
85 def find_xy(ll, T, M, numiter, rtol):
86 """
87 Computes all x, y for given number of revolutions.
88 """
89 assert np.abs(ll) < 1
90 assert T > 0
91

92 M_max = np.floor(T / np.pi)
93 T_00 = np.arccos(ll) + ll * np.sqrt(1 - ll ** 2)
94

95 if T < T_00 + M_max * np.pi and M_max > 0:
96 _, T_min = compute_T_min(ll, M_max, numiter, rtol)
97 if T < T_min:
98 M_max -= 1
99 if M > M_max:

100 raise ValueError("No feasible solution, try lower M")
101 # Initial Guess (Single Revolution)
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102 for x_0 in initial_guess(T, ll, M):
103 # Start Householder iteration from x_0 and find x, y
104 x = householder(x_0, T, ll, M, rtol, numiter)
105 y = compute_y(x, ll)
106

107 yield x, y
108 @jit
109 def compute_y(x, ll):
110 """
111 Computes y.
112 """
113 return np.sqrt(1 - ll ** 2 * (1 - x ** 2))
114 @jit
115 def compute_psi(x, y, ll):
116 """
117 Computes psi (the auxiliary angle).
118 """
119 if -1 <= x < 1:
120 # Elliptic motion
121 # by using arc cosine, we could avoid numerical errors
122 return np.arccos(x * y + ll * (1 - x ** 2))
123 elif x > 1:
124 # Hyperbolic motion
125 # Bijective
126 return np.arcsinh((y - x * ll) * np.sqrt(x ** 2 - 1))
127 else:
128 # Parabolic motion
129 return 0.0
130 @jit
131 def t_equation(x, T0, ll, M):
132 """
133 Time of Flight equation
134 """
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135 return t_equation_y(x, compute_y(x, ll), T0, ll, M)
136 @jit
137 def t_equation_y(x, y, T0, ll, M):
138 """
139 Time of Flight equation with computed y.
140 """
141 if M == 0 and np.sqrt(0.6) < x < np.sqrt(1.4):
142 eta = y - ll * x
143 S_1 = (1 - ll - x * eta) * 0.5
144 Q = 4 / 3 * hyp2f1b(S_1)
145 T_ = (eta ** 3 * Q + 4 * ll * eta) * 0.5
146 else:
147 psi = compute_psi(x, y, ll)
148 T_ = np.divide(
149 np.divide(psi + M * np.pi,
150 np.sqrt(np.abs(1 - x ** 2))) - x + ll * y,
151 (1 - x ** 2),
152 )
153 return T_ - T0
154 @jit
155 def t_equation_p(x, y, T, ll):
156 return (3 * T * x - 2 + 2 * ll ** 3 * x / y) / (1 - x ** 2)
157 @jit
158 def t_equation_p2(x, y, T, dT, ll):
159 return (3 * T + 5 * x * dT + 2 * (1 - ll ** 2) * ll ** 3
160 / y ** 3) / (1 - x ** 2)
161 @jit
162 def t_equation_p3(x, y, _, dT, ddT, ll):
163 return (7 * x * ddT + 8 * dT - 6 * (1 - ll ** 2) *
164 ll ** 5 * x / y ** 5) / (1 - x ** 2)
165 @jit
166 def compute_T_min(ll, M, numiter, rtol):
167 """
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168 Compute minimum T.
169 """
170 if ll == 1:
171 x_T_min = 0.0
172 T_min = t_equation(x_T_min, 0.0, ll, M)
173 else:
174 if M == 0:
175 x_T_min = np.inf
176 T_min = 0.0
177 else:
178 # Set x_i > 0 to avoid problems at ll = -1
179 x_i = 0.1
180 T_i = t_equation(x_i, 0.0, ll, M)
181 x_T_min = halley(x_i, T_i, ll, rtol, numiter)
182 T_min = t_equation(x_T_min, 0.0, ll, M)
183

184 return [x_T_min, T_min]
185 @jit
186 def initial_guess(T, ll, M):
187 """
188 Initial guess.
189 """
190 if M == 0:
191 # Single revolution
192 T_0 = np.arccos(ll) + ll * np.sqrt(1 - ll ** 2) +
193 M * np.pi
194 T_1 = 2 * (1 - ll ** 3) / 3
195 if T >= T_0:
196 x_0 = (T_0 / T) ** (2 / 3) - 1
197 elif T < T_1:
198 x_0 = 5 / 2 * T_1 / T * (T_1 - T) / (1 - ll ** 5) + 1
199 else:
200 x_0 = (T_0 / T) ** (np.log2(T_1 / T_0)) - 1

74/89



A STUDY OF TRAJECTORY DESIGN FROM LEO TO GEO
USING IZZO’S LAMBERT-SOLVER

201

202 return [x_0]
203 else:
204 # Multiple revolution
205 x_0l = (((M * np.pi + np.pi) / (8 * T)) ** (2 / 3) - 1) /
206 (((M * np.pi + np.pi) / (8 * T)) ** (2 / 3) + 1)
207 x_0r = (((8 * T) / (M * np.pi)) ** (2 / 3) - 1) / (
208 ((8 * T) / (M * np.pi)) ** (2 / 3) + 1)
209

210 return [x_0l, x_0r]
211 @jit
212 def halley(p0, T0, ll, tol, maxiter):
213 """
214 Find a minimum of time of flight equation using the Halley
215 method.
216 """
217 for ii in range(maxiter):
218 y = compute_y(p0, ll)
219 fder = t_equation_p(p0, y, T0, ll)
220 fder2 = t_equation_p2(p0, y, T0, fder, ll)
221 if fder2 == 0:
222 raise RuntimeError("Derivative was zero")
223 fder3 = t_equation_p3(p0, y, T0, fder, fder2, ll)
224

225 # Halley step (cubic)
226 p = p0 - 2 * fder * fder2 / (2 * fder2 ** 2 -
227 fder * fder3)
228

229 if abs(p - p0) < tol:
230 return p
231 p0 = p
232

233 raise RuntimeError("Failed to converge")
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234 @jit
235 def householder(p0, T0, ll, M, tol, maxiter):
236 """
237 Find a zero of time of flight equation using the Householder
238 method.
239 """
240 for ii in range(maxiter):
241 y = compute_y(p0, ll)
242 fval = t_equation_y(p0, y, T0, ll, M)
243 T = fval + T0
244 fder = t_equation_p(p0, y, T, ll)
245 fder2 = t_equation_p2(p0, y, T, fder, ll)
246 fder3 = t_equation_p3(p0, y, T, fder, fder2, ll)
247

248 # Householder step (quartic)
249 p = p0 - fval * (
250 (fder ** 2 - fval * fder2 / 2)
251 / (fder * (fder ** 2 - fval * fder2) + fder3 *
252 fval ** 2 / 6)
253 )
254 if abs(p - p0) < tol:
255 return p
256 p0 = p
257 raise RuntimeError("Failed to converge")

4. Hohmann Transfer file for finding the time of flight (hohmann.py);

1 import numpy as np
2 ER = 6378 # Earth's radius (km)
3 MIU_E = 398600 # km^3/s^2 (earth)
4 DU = ER # Distance Unit in km
5 TU = np.sqrt(DU ** 3 / MIU_E) # Time Unit in second
6 MIU = 1 # Normlaized GM
7
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8

9 def hohmann(ri, rf):
10 """
11 Performs Hohmann transfer between two circular orbits.
12 Keyword Arguments:
13 ri -- radius of initial orbit
14 rf -- radius of final orbit
15 """
16 ri = ri
17 rf = rf
18 at = (ri + rf) / 2
19

20 T2 = (2 * np.pi / np.sqrt(MIU_E)) * (at ** (3 / 2))
21

22 DT = T2 / 2
23

24 return DT #time of flight

5. Classical orbital elements to state vector for finding the initial and
final orbit (coe2rv.py);

1 import numpy as np
2 miu = 398600 # km^3 / s^2
3 ER = 6378
4 def coe2rv(p, e, i, RA, AP, TA):
5 """
6 In order to find the State Vector r0 & r
7 Parameter:
8 a = Semimajor axis
9 p = semiparameter

10 e = Eccentricity
11 i = Inclination
12 RA = Right Ascension of the ascending node
13 AP = Argument of Pergiee
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14 TA = True Anomaly
15 """
16 i = np.radians(i)
17 RA = np.radians(RA)
18 AP = np.radians(AP)
19 TA = np.radians(TA)
20

21 par1 = np.array([np.cos(TA), np.sin(TA), 0])
22 r_pqw = (p / (1 + e * np.cos(TA))) * par1
23

24 par2 = np.array([-np.sin(TA), e + np.cos(TA), 0])
25 v_pqw = np.sqrt(miu / p) * par2
26

27 c_RA = np.cos(RA)
28 c_AP = np.cos(AP)
29 c_i = np.cos(i)
30 s_RA = np.sin(RA)
31 s_AP = np.sin(AP)
32 s_i = np.sin(i)
33

34 ijk_pqw = np.array([[c_RA * c_AP - s_RA * s_AP * c_i, - c_RA *
35 s_AP - s_RA * c_AP * c_i, s_RA * s_i],
36 [s_RA * c_AP + c_RA * s_AP * c_i, - s_RA *
37 s_AP + c_RA * c_AP * c_i, - c_RA * s_i],
38 [s_AP * s_i, c_AP * s_i, c_i]])
39

40 r_ijk = np.dot(ijk_pqw, r_pqw)
41 v_ijk = np.dot(ijk_pqw, v_pqw)
42

43 return r_ijk, v_ijk
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Appendix B: Result Algorithm

After creating python codes above that placed in the same folder, finding the plot
result in Chapter 4 is the next step. Readers could personalize the name of the file
(no specific name needed), unlike the codes presented in Appendix A.

1. Finding v0 & v from Izzo’s solver (Table 4.1);

1 import numpy as np
2 from solver import izzo
3

4 r0 = np.array([150, 50, 0]) #insert initial position (km)
5 r = np.array([500, 1500, 0]) #insert final position (km)
6 t = 76 * 60 # time of flight (second)
7 miu = 398600 # km^3 / s^2
8 ER = 6378
9

10 def velocity(miu, r0, r, t, M=0, numiter=35, rtol=1e-8):
11

12 sols = izzo(miu, r0, r, t, M, numiter, rtol)
13 for v1, v2 in sols:
14 yield v1, v2
15

16 (v1, v2), = velocity(miu, r0, r, t)

2. Finding v0 & v from Lambert’s Universal Variables (Table 4.1);

1 import numpy as np
2 r0 = np.array([150, 50, 0]) #insert initial position (km)
3 r = np.array([500, 1500, 0]) #insert final position (km)
4 t_m = +1 # short way
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5 miu = 398600 # km^3 / s^2
6 ER = 6378.1363
7 delta_t = 76 * 60
8

9 def c2(psi):
10 """
11 Second Stumpff function (c2)
12 """
13 val = 0
14 if psi > val:
15 c = (1 - np.cos(np.sqrt(psi))) / psi
16 elif psi < val:
17 c = (np.cosh(np.sqrt(-psi)) - 1) / (-psi)
18 else:
19 c = 1.0 / 2.0
20 return c
21

22 def c3(psi):
23 """
24 Third Stumpff function (c3)
25 """
26 val = 0
27 if psi > val:
28 s = (np.sqrt(psi) - np.sin(np.sqrt(psi))) /
29 (psi * np.sqrt(psi))
30 elif psi < val:
31 s = (np.sinh(np.sqrt(-psi)) - np.sqrt(-psi)) /
32 (-psi * np.sqrt(-psi))
33 else:
34 s = 1.0 / 6.0
35 return s
36

37 def universal_variables(r0, r, delta_t, t_m):
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38 """
39 Lambert's Problem Solution using Universal Variables.
40 where:
41 - n_ro & n_r = Magnitude of both r0 & r
42 - TA = True Anomaly
43 In the process of Looping, the number 35 could be replaced.
44 It depends on the number of iteration available.
45 """
46 n_r0 = np.dot(r0, r0)**0.5
47 n_r = np.dot(r, r)**0.5
48

49 cos_TA = np.dot(r0, r) / (n_r0 * n_r)
50 # sin_TA = t_m * np.sqrt(1 - cos_TA ** 2)
51 # TA = np.degrees(np.arcsin(sin_TA))
52

53 A = t_m * (n_r * n_r0 * (1 + cos_TA))**.5
54 if A == 0.0:
55 raise RuntimeError("A must be positive.\
56 Cannot compute orbit")
57 psi_n = 0.0
58 psi_up = 4 * np.pi**2
59 psi_low = -4 * np.pi
60

61 count = 0
62 while count < 35:
63 y_n = n_r0 + n_r + (A * (psi_n * c3(psi_n) - 1) /
64 c2(psi_n) ** 0.5)
65

66 if A > 0.0 and y_n < 0.0:
67 # then readjust psi_low until y_n > 0.0
68 pass
69

70 x_n = np.sqrt(y_n / c2(psi_n))
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71 delta_t_n = (x_n ** 3 * c3(psi_n) + A * np.sqrt(y_n)) /
72 np.sqrt(miu)
73 if np.abs((delta_t_n - delta_t) / delta_t) < 1e-6:
74 break
75 else:
76 count += 1
77 if delta_t_n <= delta_t:
78 psi_low = psi_n
79 else:
80 psi_up = psi_n
81

82 psi_n = (psi_up + psi_low) / 2
83 else:
84 print('FALSE')
85

86 f = 1 - y_n / n_r0
87 g = A * np.sqrt(y_n / miu)
88 g_dot = 1 - (y_n / n_r)
89

90 v0 = (r - f * r0) / g
91 v = (g_dot * r - r0) / g
92 return v0, v
93 v0, v = universal_variables(r0, r, delta_t, t_m)

→ Algorithm below is used as the main code for the remaining of plot
result.

3. The main code in finding the Total ∆v;

1 from solver import izzo
2 import numpy as np
3 from hohmann import hohmann
4 from coe2rv import coe2rv
5 from numpy.linalg import norm
6
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7 import matplotlib
8 import matplotlib.pyplot as plt
9 matplotlib.rcParams["text.usetex"] = True

10

11 miu = 398600 # km^3 / s^2
12 ER = 6378
13 ER = 6378.1363 # Earth's radius (km)
14 MIU_E = 3.986004415e5 # km^3/s^2 (earth)
15 DU = ER # Distance Unit in km
16 TU = np.sqrt(DU ** 3 / MIU_E) # Time Unit in second
17 MIU = 1 # Normlaized GM
18

19 def semi_p(a, e):
20 p = a * (1 - e ** 2)
21 return p
22 """
23 Where:
24 e = Eccentricity, h = Altitude, a = Semimajor axis,
25 p = semiparameter, inc = Inclination,
26 Omega = Right ascension of the ascending node,
27 omega = Argument of perigee, nu = True anomaly.
28 """
29 # Initial orbit
30 e0 = 0
31 h0 = 220 # altitude (km)
32 a0 = (h0 + ER)
33 p0 = semi_p(a0, e0)
34 inc0 = 0
35 Omega0 = 0
36 omega0 = 0
37 nu0 = 0
38 r0, v0 = coe2rv(p0, e0, inc0, Omega0, omega0, nu0)
39
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40 # Final orbit
41 e1 = 0
42 h1 = 35786 # altitude (km)
43 a1 = (ER + h1)
44 p1 = semi_p(a1, e1)
45 inc1 = 0
46 Omega1 = 0
47 omega1 = 0
48 nu1 = 120
49 r, v = coe2rv(p1, e1, inc1, Omega1, omega1, nu1)
50

51 r1_ = norm(r0)
52 r2_ = norm(r)
53

54 DT = hohmann(r1_, r2_)
55 ts = np.linspace(0.2 * DT, 2 * DT, 50) # second
56

57 def izzo_vary_tof(r0, r, ts, M=0):
58 """
59 Delta-V variation when time of flight vary
60 Keyword Arguments:
61 r0 -- initial position (RE)
62 r -- final position (RE)
63 ts -- array of time of flight (TUs)
64 M -- (default 0)
65 """
66 delta_vs = np.array([])
67 for t in ts:
68 ((v0_izzo, v_izzo),) = izzo(miu, r0, r, t=t, M=0,
69 numiter=35, rtol=1e-8)
70 Dv0 = norm(v0_izzo - v0)
71 Dv1 = norm(v_izzo - v)
72 Dv = Dv0 + Dv1
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73 delta_vs = np.append(delta_vs, Dv)
74 return delta_vs
75 # Enter variation of the simulation

There are several simulation taken in this thesis, starts from just a simple plot result
(Figure 4.1) to the variation of initial altitudes. By putting the next list of codes
into the code above (after the command of ”# Enter variation of the simulation”),
finding the remainder of the plot result is achievable. For each variation, readers
could create a new file or just change the variation of the simulation in the same
file.

• Finding the plot result in Figure 4.1;

76 delta_vs = izzo_vary_tof(r0, r, ts, M=0)
77 fig, ax = plt.subplots(figsize=(10, 6))
78 ax.plot(ts / 3600, delta_vs, "o")
79 ax.annotate(r'Total $\Delta v_{min}=5.95136076$',
80 xy=(3.56534567, 5.95136076), xytext=(5, 17),
81 arrowprops=dict(facecolor='black', shrink=0.05), fontsize=17)
82 ax.annotate('or Hohmann Transfer',
83 xy=(3.56534567, 5.95136076), xytext=(5, 16), fontsize=14)
84 ax.axvspan(3.5, 3.65, color='orange', alpha=0.5)
85 ax.set_xlabel("time of flight (hour)", fontsize=14)
86 ax.set_ylabel(r"Total $\Delta V$ (km/s)", fontsize=14)
87 ax.set_title(r"The Time of Flight VS $\Delta v$", fontsize=16)
88 ax.grid("both")
89 plt.savefig("delta_v_hoh.pdf", dpi=600)
90 plt.show()

• Finding the plot result in Figure 4.5 (Initial Inclination variation);

76 # Vary inclination only
77 fig, ax = plt.subplots(figsize=(9, 9))
78 inc0s = np.linspace(0, 180, 10)
79 for inc0 in inc0s:
80 r0, v0 = coe2rv(p0, e0, inc0, Omega0, omega0, nu0)
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81 delta_vs = izzo_vary_tof(r0, r, ts, M=0)
82 label = r"$i_0=$" + str(int(inc0))
83 ax.plot(ts / 3600, delta_vs, "o", label=label)
84 ax.set_xlabel("tof (hour)")
85 ax.set_ylabel(r"Total $\Delta V$ (km/s)")
86 plt.grid("both")
87 plt.legend(loc="best", ncol=5, shadow=True, fancybox=True,
88 title=r"Inclination (deg)")
89 plt.savefig("izzo_inc0_vary.pdf", dpi=600)
90 plt.show()

• Finding the plot result in Figure 4.6 (Initial RAAN variation);

76 # Vary Omega only
77 fig, ax = plt.subplots(figsize=(9, 9))
78 Omega0s = np.linspace(0, 180, 10)
79 for Omega0 in Omega0s:
80 r0, v0 = coe2rv(p0, e0, inc0, Omega0, omega0, nu0)
81 delta_vs = izzo_vary_tof(r0, r, ts, M=0)
82 label = r"$\Omega_0=$" + str(int(Omega0))
83 ax.plot(ts / 3600, delta_vs, "o", label=label)
84 ax.set_xlabel("tof (hour)")
85 ax.set_ylabel(r"Total $\Delta V$ (km/s)")
86 plt.grid("both")
87 plt.legend(loc="best", ncol=5, shadow=True, fancybox=True,
88 title=r"$\Omega$ (deg)")
89 plt.savefig("izzo_Omeg0_vary.pdf", dpi=600)
90 plt.show()

• Finding the plot result in Figure 4.7 (Initial Argument of Perigee
variation);

76 # Vary omega only
77 fig, ax = plt.subplots(figsize=(9, 9))
78 omega0s = np.linspace(0, 90, 10)
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79 for omega0 in omega0s:
80 r0, v0 = coe2rv(p0, e0, inc0, Omega0, omega0, nu0)
81 delta_vs = izzo_vary_tof(r0, r, ts, M=0)
82 label = r"$\omega_0=$" + str(int(omega0))
83 ax.plot(ts / 3600, delta_vs, "o", label=label)
84 ax.set_xlabel("tof (hour)")
85 ax.set_ylabel(r"Total $\Delta V$ (km/s)")
86 plt.grid("both")
87 plt.legend(loc="best", ncol=5, shadow=True, fancybox=True,
88 title=r"$\omega$ (deg)")
89 plt.savefig("izzo_omeg0_vary.pdf", dpi=600)
90 plt.show()

• Finding the plot result in Figure 4.8 (Initial altitude variation);

76 # Vary h only
77 Dvs220 = np.array(
78 [
79 18.2073288, 14.59455162, 12.05787424, 10.24392655,
80 8.94191278, 8.01047726, 7.34692165, 6.87536006,
81 6.54116087, 6.30630289, 6.14489581, 6.03938881,
82 5.9777264, 5.95136076, 5.95391769, 5.9803353,
83 6.02634382, 6.08818925, 6.16251882, 6.24635666,
84 6.33711321, 6.43259262, 6.53098262, 6.6308257,
85 6.73097761, 6.83056024, 6.9289149, 7.02555964,
86 7.12015226, 7.21245948, 7.30233191, 7.38968411,
87 7.47447885, 7.55671487, 7.63641742, 7.71363095,
88 7.78841352, 7.86083254, 7.93096153, 7.99887763,
89 8.0646598, 8.12838741, 8.19013927, 8.24999281,
90 8.30802365, 8.36430515, 8.41890819, 8.47190107,
91 8.52334935, 8.57331589,
92 ])
93 fig, ax = plt.subplots(figsize=(9, 9))
94 h0s = np.linspace(220, 400, 10)
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95 for h0 in h0s:
96 a0 = (ER + h0)
97 p0 = semi_p(a0, e0)
98 r0, v0 = coe2rv(p0, e0, inc0, Omega0, omega0, nu0)
99 delta_vs = izzo_vary_tof(r0, r, ts, M=0)

100 label = r"$h_0=$" + str(int(h0))
101 total_delta_vs = delta_vs - Dvs220
102 ax.plot(ts / 3600, total_delta_vs, "o", label=label)
103 ax.set_xlabel("tof (hour)")
104 ax.set_ylabel(r"Total $\Delta V$ - Total $\Delta V_{h0=220km}$\
105 (km/s)")
106 plt.grid("both")
107 plt.legend(loc="best", ncol=5, shadow=True, fancybox=True,
108 title=r"$a$ (km)")
109 plt.savefig("izzo_h0_vary.pdf", dpi=600)
110 plt.show()

REMEMBER: To put all the code files both of Appendix A and B in the same
folder for all the code in Appendix B could be run.
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