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“Nothing takes place in the world whose meaning is not that of some maximum or minimum.”

Leonhard Euler



INTERNATIONAL UNIVERSITY LIAISON INDONESIA (IULI)

Abstract
Faculty of Engineering

Department of Aviation Engineering

Sarjana Teknik

Preliminary Orbit Transfer Design from Low Earth Orbit to Geostationary Earth Orbit

by Jason NATHANAEL

Lorem ipsumdolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulumut, plac‐
erat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy
eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque
habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut
leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasel‐
lus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra
ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla,
malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci
eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit
amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non
justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed
accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et
nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis
natoque penatibus etmagnis dis parturientmontes, nascetur ridiculusmus. Aliquamtincidunt
urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tris‐
tique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasel‐
lus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae,
placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec,
suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed
lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Prae‐
sent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus.
Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

HTTPS://WWW.IULI.AC.ID/
https://www.iuli.ac.id/programs/engineering/
https://www.iuli.ac.id/programs/engineering/aviation-engineering-avionics/


STATEMENT BY THE AUTHOR

I hereby declare that this submission is my own work and to the best of my knowledge, it
contains no material previously published or written by another person, nor material which to
a substantial extent has been accepted for the award of any other degree or diploma at any
educational institution, except where due acknowledgement is made in the thesis.

Jason Nathanael
Student Date



APPROVAL PAGE

Preliminary Orbit Transfer Design from Low Earth Orbit to Geostationary Earth Orbit

Jason NATHANAEL

July 23, 2020

Faculty of Engineering

0 Triwanto Simanjuntak, PhD
Advisor I, Department of Aviation Engineering Date

Dr. Ir. Prianggada Indra Tanaya, M.M.E.
Dean of Engineering Date



Acknowledgements
This thesis
Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultri‐

ces. Lorem ipsumdolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst.
Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean
placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit
purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae
risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper,
leo velit ultricies tellus, ac venenatis arcuwisi vel nisl. Vestibulumdiam. Aliquampellentesque,
augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Mae‐
cenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu
lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et
vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras
ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam
feugiat lacus vel est. Curabitur consectetuer.

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu.
Aenean faucibus pede eu ante. Praesent enim elit, rutrumat, molestie non, nonummy vel, nisl.
Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus.
Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed
nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non,
pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.



CONTENTS

Abstract ii

STATEMENT BY THE AUTHOR iii

APPROVAL PAGE iv

Acknowledgements v

1 INTRODUCTION 1
1.1 General Statement of Problem Area . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Significance of the Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Theoretical Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.5 Research Questions and Hypothesis . . . . . . . . . . . . . . . . . . . . . . . 3

1.5.1 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5.2 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.6 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.7 Design and Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.8 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 LITERATURE REVIEW 6
2.1 Two Body Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Introduction to Two Body Problem . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Newton’s Law of Universal Gravitation . . . . . . . . . . . . . . . . . . 6
2.1.3 Kepler’s Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.4 Inertial Frame of Reference . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.5 The Two Body Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Classical Orbital Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Introduction to Parameterization and COE . . . . . . . . . . . . . . . . 12
2.2.2 Semimajor Axis (a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 Eccentricity (e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13



2.2.4 Inclination (i) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.5 Longitude of Ascending Node (Ω) . . . . . . . . . . . . . . . . . . . . 15
2.2.6 Argument of Periapsis (ω) . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.7 True Anomaly (v) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Conversion Algorithm Between Position and Velocity Vectors to Classical Or‐
bital Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 From RV to COE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 From COE to RV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Orbit Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.1 Low Earth Orbit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.2 Medium Earth Orbit . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.3 Geosynchronous Orbit and Geostationary Orbit . . . . . . . . . . . . . 19
2.4.4 High Earth Orbit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Orbital Maneuvering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5.1 Introduction to Orbital Maneuvering . . . . . . . . . . . . . . . . . . . 21
2.5.2 Rocket Equation and Delta V . . . . . . . . . . . . . . . . . . . . . . . 22
2.5.3 Hohmaan Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5.4 Bi‐elliptic Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5.5 Non‐co‐planar Maneuvers . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 Satellite Orbit Definition and Two‐Line Element (TLE) . . . . . . . . . . . . . . 24
2.7 Perturbation to a Satellite’s Orbit . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.7.1 Atmospheric Drag Perturbation . . . . . . . . . . . . . . . . . . . . . 25
2.7.2 Oblateness Perturbation . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.7.3 Third‐Body Perturbation . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.8 Lambert’s Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.9 Developments of Spacecraft Trajectory Optimization . . . . . . . . . . . . . . 31

2.9.1 Missions around Earth’s Sphere of Influence . . . . . . . . . . . . . . . 32
Optimal LEO‐GEO Intermediate Acceleration Orbit Transfer Using Nu‐

clear Propulsion . . . . . . . . . . . . . . . . . . . . . . . . 32
MinimumFuel LEOAeroassistedOrbit Transfer of Small Spacecraftwith

Inclination Change . . . . . . . . . . . . . . . . . . . . . . . 32
2.9.2 Deep Space Exploration . . . . . . . . . . . . . . . . . . . . . . . . . 32

Hayabusa‐2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Juno . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Earth to Mars using Primer Vector . . . . . . . . . . . . . . . . . . . . 35



3 RESEARCH METHODOLOGY 36
3.1 Research Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Scientific Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.1 Python Programming Language . . . . . . . . . . . . . . . . . . . . . 37
3.2.2 Anaconda Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.3 NumPy Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.4 SciPy Ecosystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.5 MatPlotLib Plotter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Building Math Toolbox ‐ Converting from TLE into Orbital Elements . . . . . . . 38
3.3.1 Introduction to LAPAN A2 . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.2 Obtaining LAPAN A2 data from Celestrak . . . . . . . . . . . . . . . . 39
3.3.3 Conversion Regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Building Math Toolbox ‐ Conversion Between State Vectors and Orbital Elements 41
3.4.1 From Orbital Elements into State Vectors . . . . . . . . . . . . . . . . 42
3.4.2 From State Vectors into Orbital Elements . . . . . . . . . . . . . . . . 42

3.5 Building Math Toolbox ‐ Orbit Propagation . . . . . . . . . . . . . . . . . . . . 44
3.5.1 Orbital Propagation using ODE Solver . . . . . . . . . . . . . . . . . . 44
3.5.2 Orbital Propagation in Consideration for J2 Perturbation . . . . . . . . 45

3.6 Building Math Toolbox ‐ Orbit Maneuvering . . . . . . . . . . . . . . . . . . . 45
3.6.1 Calculation of Orbit Change Using Hohmann Transfer . . . . . . . . . . 46
3.6.2 Calculation of Orbit Change Using Bi‐elliptic Transfer . . . . . . . . . . 47
3.6.3 Non‐co‐planar Maneuver ‐ Inclination Change Only . . . . . . . . . . . 49
3.6.4 Non‐co‐planarManeuver ‐ Right Ascension of Ascending Node Change

Only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.6.5 Non‐co‐planar Maneuver ‐ Both Changes . . . . . . . . . . . . . . . . 49

3.7 Building Math Toolbox ‐ Lambert’s Problem Solver . . . . . . . . . . . . . . . . 50
3.8 Mission Design ‐ Selection of Suitable Launch Vehicle and Launch Site . . . . . 53
3.9 Mission Design ‐ Scenario One . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.9.1 Calculation of Maneuver from Initial Orbit (LEO) to GSO via Hohmann
and Bi‐Elliptic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.9.2 Calculation of Maneuver from GSO to GEO via Non‐Co‐Planar Maneuver 54
3.10 Mission Design ‐ Scenario Two . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.10.1 Calculation from Inclined Plane to Equatorial Plane . . . . . . . . . . . 54
3.10.2 Calculation of Orbit Enlargement using Hohmann and Bi‐elliptic Transfer 54

3.11 Mission Design ‐ Scenario Three (via Lambert Solver) . . . . . . . . . . . . . . 55
3.12 Mission Analysis ‐ Total Delta V Comparison . . . . . . . . . . . . . . . . . . . 55

3.12.1 Propagation of Orbit With and Without J2 Perturbation . . . . . . . . . 55



3.13 Mission Analysis ‐ Possible Payload Calculation . . . . . . . . . . . . . . . . . 55

4 RESULTS AND DISCUSSION 56
4.1 Mathematical Tools Confirmation . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1.1 Checking of the Conversion Regime . . . . . . . . . . . . . . . . . . . 56
4.1.2 Propagation of LAPAN A2 Orbit With and Without J2 . . . . . . . . . . 57

4.2 Mission Design ‐ Launch Vehicle . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.1 Introduction to Epsilon Rocket . . . . . . . . . . . . . . . . . . . . . . 61
4.2.2 Epsilon Rocket Specification . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Initial and Final Orbit Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3.1 Initial LEO (Parking Orbit) Definition . . . . . . . . . . . . . . . . . . . 65
4.3.2 Final Geostationary Orbit Definition . . . . . . . . . . . . . . . . . . . 65

4.4 Scenario One Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.5 Scenario Two Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.6 Scenario Three (Lambert Solver) Result . . . . . . . . . . . . . . . . . . . . . . 66
4.7 Comparison of Each Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.8 Payload Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.9 Final Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 CONCLUSIONS AND FUTURE WORKS 67
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Bibliography 68



LIST OF FIGURES

2.1 Visualization of the law of universal gravitation. . . . . . . . . . . . . . . . . . 7
2.2 Visualization of Kepler’s First Law. . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Perihelion and Aphelion. Image credit: (Chris55, 2015) . . . . . . . . . . . . . 9
2.4 A perfectly inertial, fixed‐mass system, and the forces acting on the satellite.

Image credit: (Vallado and McClain, 2013) . . . . . . . . . . . . . . . . . . . . 10
2.5 A perfectly inertial, two‐body system. Image credit: (Vallado and McClain, 2013) 10
2.6 Cartesian Vectors of Position and Velocity. Image credit: (0.39, 2004) . . . . . 13
2.7 Visualization of the six Classical Orbital Elements. Image credit: Lasunncty, 2007 14
2.8 Low Earth Orbit. Image credit: Low Earth Orbit . . . . . . . . . . . . . . . . . 18
2.9 Galileo Satellite Constellation. Image credit: European Space Agency, 2020b . . 19
2.10 Geostationary Earth Orbit. Image credit: European Space Agency, 2020a . . . . 20
2.11 Earth’s Lagrange Points. Image credit: Catalog of Earth Satellite Orbits . . . . . 21
2.12 Hohmann Transfer, a maneuver using two burns. Image credit: Vallado and

McClain, 2013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.13 Bi‐elliptic Transfer, two Hohmann transfer in succession. Image credit: Vallado

and McClain, 2013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.14 The Density of the Atmosphere Up to 1000 km According To US Standard At‐

mosphere. Image credit: Curtis, 2014 . . . . . . . . . . . . . . . . . . . . . . 26
2.15 Effect of the Moon on a spacecraft as a third‐body perturbation. Image credit:

Curtis, 2014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.16 Visualization of Lambert’s Problem on a single orbit as a way for orbit deter‐

mination. Image credit: Curtis, 2014 . . . . . . . . . . . . . . . . . . . . . . . 28
2.17 When finding the trajectory between two point on an orbit, there’s the possi‐

ble long way and the possible short way. Image credit: Vallado and McClain,
2013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.18 Hayabusa‐2 Trajectory to Ryugu. Image credit: Tsuda et al., 2013 . . . . . . . . 33
2.19 Hayabusa‐2 Spacecraft. Image credit: Tsuda et al., 2013 . . . . . . . . . . . . . 34
2.20 Juno’s Trajectory to Jupiter. Image credit: Matousek, 2007 . . . . . . . . . . . 35
2.21 Juno Spacecraft, showing the extended solar cell array. Image credit: Ma‐

tousek, 2007 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35



3.1 3DModel of LAPANA2. Image credit: Hardhienata, Triharjanto, andMukhayadi,
2011 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 3D Orbit Visualization of LAPAN A2 (16th June 2020), With and Without J2
Perturbation ‐ On A Single Graph . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 3D Orbit Visualization of LAPAN A2 (16th June 2020), With and Without J2
Perturbation ‐ Side‐by‐Side Comparison . . . . . . . . . . . . . . . . . . . . . 58

4.3 Classical Orbital Elements of LAPAN A2 (16th June 2020) ‐ Without J2 Pertur‐
bation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Classical Orbital Elements of LAPAN A2 (16th June 2020) ‐ With J2 Perturbation 59
4.5 Comparison of Right Ascension of Ascending Node and Argument of Perigee

of LAPAN A2 (16th June 2020), With and Without J2 Perturbation . . . . . . . 59
4.6 Top and Side View of LAPAN A2 Orbit (16th June 2020), With J2 Perturbation . 60
4.7 Diagram of Epsilon Launch Vehicle.) Image credit: Agency, 2018 . . . . . . . . 62
4.8 Uchinoura Space Center, the Launch Site for Epsilon Launch Vehicle. Image

credit: Agency, 2018 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.9 Launch of Epsilon Launch Vehicle from Uchinoura Space Center. Image credit:

Uchinoura Space Center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.10 Specification of Epsilon Launch Vehicle. Image credit: Agency, 2018 . . . . . . 64
4.11 Accuracy of the Epsilon Launch Vehicle. Image credit: Agency, 2018 . . . . . . 64



LIST OF TABLES

2.1 Elements inside a Two‐Element Set data. . . . . . . . . . . . . . . . . . . . . . 25

3.1 Two Line Element of LAPAN A2. . . . . . . . . . . . . . . . . . . . . . . . . . . 40



LIST OF ABBREVIATIONS

UAV Unmanned Aerial Vehicle
COG Center Of Gravity
CAD Computer Aided Design
RPM Rotation PerMinute
ESC Electronic Speed Control



Dedicated to my parents



CHAPTER 1

INTRODUCTION

1.1 General Statement of Problem Area

The Indonesian space agency, Lembaga Penerbangan dan Antariksa Nasional (LAPAN), has
been focusing on building and deploying microsatellites for quite some time. The microsatel‐
lites were deployed to Low Earth Orbit (LEO), which is an orbit which has an altitude of fewer
than 2000 kilometers from the Earth’s surface. The choice of using microsatellites and launch‐
ing them into Low Earth Orbit is driven primarily due to lower cost and lower development
resources needed. Examples of such microsatellites are LAPAN‐TUBSAT and LAPAN‐A2. These
microsatellites serve very important purposes in monitoring Indonesia’s vast territory, from
disaster mitigation to ship identification.

In the future, Indonesia has also expressed its intention to build its own satellites for com‐
munication services and deploy the satellites to Geostationary Earth Orbit (GEO). Geostation‐
ary Earth Orbit is a type of orbit where the satellite moves in accordance with earth rotation,
which makes the satellite looks fixed in the sky when seen by a viewer on the ground. The
altitude of Geostationary Earth Orbit is 35 786 km from Earth’s surface, which is much higher
than LEO.

Thus, it is planned to first deploy the satellites in LEO and then transferred to GEO through
orbital maneuvers. In order to get to GEO via LEO using orbital maneuvers, the most opti‐
mal transfer trajectories are desired. The most optimal trajectory will save Delta V, which
means howmuch change of velocity in the orbit can the satellite/spacecraft move by using its
thrusters. As Delta V comes from the propellant that is brought by the satellite/spacecraft, by
reducing the Delta V required, there will be saving in cost due to less propellant needed and
more of the satellite mass is dedicated to actual useful payload instead of propellant.

1.2 Research Purpose

The objectives of this research are to investigate:
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ORBIT

• Finding various scenarios of trajectory from LowEarthOrbit to Geostationary EarthOrbit

• Comparing the propellant cost of such trajectories

• Calculating the estimated mass that can be brought with a type of launch vehicle

1.3 Significance of the Study

The results of this research are expected:

• Can be used by LAPAN or other entity as the nominal trajectory for a future real mission
to establish GEO satellite.

• Comparisons of various techniques to achieve Geostationary Orbit.

• Can be used to estimate the fuel budget, hence the total mass of the satellite.

1.4 Theoretical Perspective

Trajectory optimization is an act of finding the best way from one place to another, in this case,
from Low Earth Orbit to Geostationary Earth Orbit. As the term “best” is subjective, the most
common objective of trajectory optimization is to minimize the propellant required for the
trajectory. Besides the minimal propellant required, the optimization also needs to consider
the time required for the trajectory, as without a limit on time, the calculation simply trade
time required with propellant required. A trajectory optimization problem is also a continuous
problem, as the system is nonlinear and various events can occur during the trajectory, such
as instantaneous velocity changes from the rocket engine, perturbation from other celestial
objects, or various conditions that are not known explicitly during the onset of the launch.

A type of solution for the trajectory optimization problem is called Primer Vector Theory.
Primer Vector Theory has its origins back in 1925, whenWalter Hohmann, a German scientist,
wrote a book describing a way to move from one circular orbit to another circular orbit. This
transfer, called the Hohmann Transfer, is found to be one of themost fuel‐efficient and optimal
transfers from one circular orbit to another circular orbit in the simplest of cases.

Based on Hohmann’s conjecture, using the calculus of variation, the Hohmann can be ex‐
panded further. A generalization of this calculus of variation is called the Optimal Control. In
Optimal Control, it has a set of Necessary Conditions (NC) which must be fulfilled, and Suffi‐
cient Conditions (SC) if they are available. When the NC of a case is fulfilled, it will become the
optimal solution.
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By considering the spacecraft position vectors, velocity vectors, thrust vectors, and the
gravitational vector, it can be derived using the calculus of variations a vector that shows the
direction where the spacecraft should go in order to optimally transfer its orbit. This vector
is called the primer vector, and the optimal thrust unit vector is in the direction of the primer
vector.

As mentioned above, there are several cases of primer vector theory. The first case is for
a constant specific impulse engine with a constant thrust, the second is for a constant specific
impulse engine with an impulsive thrust, and the last one is for variable specific impulse en‐
gine. For the purpose of this research, this study focuses only on the CSI type of engine with
impulsive thrust, meaning that the duration of thrust (engine burn) is very small compared
with the time between burns, so the duration of burn can be considered as zero.

1.5 Research Questions and Hypothesis

1.5.1 Questions

1. Can primer vector theory be used to find the trajectory from Low Earth‐Orbit to Geosta‐
tionary Earth Orbit?

2. Is the trajectory solved according to primer vector theory more optimized than the tra‐
jectory found using typical Hohmann transfer or any other method?

3. How influential is the initial orbit parking provided by various launch services in regards
to Delta V available?

4. For some common small orbital launcher systems (such as Electron by Rocket Lab), how
much payload can be brought to Geostationary Earth Orbit using this method?

1.5.2 Hypothesis

1. By utilizing primer vector theory, an optimal transfer orbit from Low Earth Orbit to Geo‐
stationary Earth Orbit can be found.

2. Using Primer Vector Theory would result in a trajectory that requires less Delta V than
Hohmann transfer.

3. The initial orbit parking will have an impact on conserving Delta V for orbital maneuvers.

4. The weight of usable payload to be brought to Geostationary Earth Orbit small orbital
launcher services. E.g. Electron by Rocket Lab
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1.6 Methodology

Steps that will be taken for this thesis are:

1. Determine the initial Low Earth Orbit parameters which the satellite initially orbits.

2. Determine the target Geostationary Earth Orbit parameters that the satellite wanted to
transfer to.

3. Derive the equations for Primer Vector Theory.

4. Development of mathematical tools to solve the problem using Python programming
language.

5. Validation of the results by comparing the solved result to results obtained using Hof‐
mann transfer method, whether it is more optimized or not.

6. Determination of various candidate launch sites and their initial orbit parking. Calculat‐
ing the amount of Delta V available for a base‐line small orbital launch vehicle in order
to reach the target Low Earth Orbit for each launch site.

7. Determining the amount of usable payload available for a small Orbital launch Vehicle
(Electron by Orbital Lab), using the most optimal transfer orbit and the most optimal
launch site gathered from previous steps. The amount is determined by calculating the
Delta V left after final orbital insertion.

1.7 Design and Instrumentation

This research will focus on the trajectory design of a communication satellite which is initially
in Low Earth Orbit (LEO) and wanted to move to the Geostationary Earth Orbit (GEO).

The research will be conducted purely by a numerical method which utilize scientific com‐
putational tools, specifically the Python programming language. A computer program made
with Python will be used to calculate and solve the problem after the equations have been
derived.

The research will also identify and analyze publicly available information for the determi‐
nation of launch sites and specifications of the rocket.

1.8 Data Analysis

The data analysis for this research will be conducted numerically and also will be consulted
with the publicly available research literature. The calculation process will be conducted using
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a programmade with Python programming language at its related scientific libraries. The pro‐
gram written in Python programming language will be used for data analysis for the following
parameters, but not limited to:

• Orbit propagator

• The transformation from state vectors to classical orbital elements and vice‐versa

• Computations related to Primer Vector Theory

• Delta V for numerous orbit raising scenarios
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CHAPTER 2

LITERATURE REVIEW

2.1 Two Body Problem

2.1.1 Introduction to Two Body Problem

One of the laying foundation in Astrodynamics is the two‐body problem. The two‐body prob‐
lem is interested in the motion of two masses due to gravitational forces acted by each other.
In a two‐body problem, any other forces acting on the two‐mass system, such is the presence
of another body (”third‐body”) are neglected, and so the two bodies are also considered to be
not colliding because any frictional or impact forces are not considered.

The basis of two‐body problem is classical mechanics, and thus, the Newton’s Law of Mo‐
tion. Another law that forms the basis of two‐body problem is Newton’s Law of Universal
Gravitation and can be further expanded using Kepler’s Law.

2.1.2 Newton’s Law of Universal Gravitation

Originally written by Newton in his book ”Philosophiæ Naturalis Principia Mathematica” , the
Newton’s Law of Universal Gravitation states that:

Definition 1 Every object with mass shall attract another mass, with a force that acts along
a line that intersects with the two objects. The magnitude of the force is proportional to the
product of the two objects, and shall be inversely proportional to their distance between them
squared.

In mathematical terms,
F = G

m1m2

r2 (2.1)

where

• F is for the force between the masses. There are two forces, F1, which is the force from
m1 to m2, and F2, which is the force from m2 to m1. Both have the same magnitude.
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• G is the gravitational constant. The measured value of G in SI units, obtained through
experiments, is 6.674 ∗ 10−11m3 · kg−1 · s−2.

• m1 is the first mass.

• m2 is the second mass.

• r is the distance between the centers of first mass and second mass.

FIGURE 2.1: Visualization of the law of universal gravitation.

As shown the diagram, there exists two forces with opposing direction yet with the same
magnitude. To account for this, the equation can be rewritten as a vector equation as the
following:

F21 = −G
m1m2

|r12|2
r̂12 (2.2)

where

• F12 is the force acting on m2 due to m1

• G is the gravitational constant

• m1 and m2 is the mass of the two objects

• |r12| is the distance between the two masses

• r̂12 is the unit vector from m1 to m2

for the force acting on the other direction,

F12 = F21 (2.3)
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2.1.3 Kepler’s Laws

Written by Johannes Kepler between 1609 and 1619 based on his observations of orbits of the
planets, the Kepler’s laws is a set of three laws that govern the motion of heavenly bodies, in
this case the planets, around its center (the Sun). It is also found that the Kepler’s Laws apply
not only on planets, but may also apply to any orbiting body, such as a satellite orbiting the
Earth. The Kepler’s Laws are as follow:

Definition 2 Kepler’s First Law: Each planet orbits in an elliptical path, with the Sun in one of
the foci.

Expanded further, the elliptical path taken by an object can be any variation of a conic
section, such as an ellipse, a hyperbola, a parabola, or a circle. For cases of hyperbola and
parabola, because they are divergent, thus the satellites do not repeat their position and these
orbits are called open orbits. For cases of circle and elliptical orbit, because the satellite repeat
their position over time, are called closed orbits.

Through Newton’s law of universal gravitation, it is known that the masses of the object
affects the force of gravity between them. Taking this into account, the law can be expanded
further to: the center of mass of the two object, called the barycenter, will be one of the foci.
In case of a very large difference betweenmasses of the objects, such as the Sun and its planes,
or the Earth and an orbiting man‐made satellite, the barycenter is located inside the heaviest
object (such as the Sun).

FIGURE 2.2: Visualization of Kepler’s First Law.

Definition 3 Kepler’s Second Law: A straight line between the Sun and a planet shall sweep
equal amount of area with equal amount of time.

As an orbit is elliptical, there will be a point where the orbiter will be closest to the primary
body/barycenter, and there wlll be point where the planet will be farthest. Such points are
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called apoapsis for the farthest point and periapsis for the closest point. If the primary body
is the Sun, the points are called aphelion and perihelion, while for orbits where the Earth is
the primary body, these are called apogee and perigee, respectively.

Due to the Kepler’s Law, this means that the speed of an orbiter is not constant. It will be
the slowest when it is in apoapsis, and will be the fastest when it is in periapsis.

FIGURE 2.3: Perihelion and Aphelion. Image credit: (Chris55, 2015)

Definition 4 Kepler’s Third Law: The square of orbital period of a planet shall be proportional
to the cube of its semimajor axis.

Written mathematically,

T2 =
4π2

G(M1 + M2)
a3 (2.4)

Where

• T is the orbital period

• G is the gravitational constant

• M1 and M2 are masses of the body

• a is the semimajor axis

2.1.4 Inertial Frame of Reference

For analysis of a two‐body problem, a coordinate system must first be defined. The definition
is as follows: it is a perfectly inertial system, so it doesn’t rotate nor accelerate. The bodies
are considered as point masses. For a fixed‐mass system, where we only consider the gravity
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from the point central body, the initial point of the coordinate system is located at the center
of mass of the system.

FIGURE 2.4: A perfectly inertial, fixed‐mass system, and the forces acting on
the satellite. Image credit: (Vallado and McClain, 2013)

For a two‐body system on an inertial reference plane, taking into account the forces be‐
tween the primary body and the orbiting body, the coordinate system can bemade as follows:

FIGURE 2.5: A perfectly inertial, two‐body system. Image credit: (Vallado and
McClain, 2013)

2.1.5 The Two Body Equation

Based upon the geometry in Fig. 2.5, we can derive the equation for a two‐body system. The
mass of the satellite is labeled as msat while the mass of the primary body is labeled as m⊕.
At the same time, the position vector is labeled as r̂⊕ and r̂sat . To analyze the forces on the
system, Newton’s law of universal gravitation is written as:

F̂g = −Gm⊕msat

r2
r̂
r

(2.5)
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and a vector from the primary body to the satellite is:

r̂⊕ sat = r̂sat − r̂⊕ (2.6)

As we use a inertial coordinate system, by simply differentiating each of the vector com‐
ponent to its second derivatives we can found the acceleration of the satellite relative to the
main body:

¨̂r⊕ sat = ¨̂rsat − ¨̂r⊕ (2.7)

The Second Law of Newton states that, for a fixed‐mass system:

ΣF̂ =
d(mv̂)

dt
= mâ (2.8)

combined with the aforementioned law of universal gravitation, the force on the satellite
can be written as:

F̂gsat = msat ¨̂rsat = −Gm⊕msat

r2
r̂
r

(2.9)

and the force on the primary body can be written as:

F̂g⊕ = m⊕ ¨̂r⊕ =
Gm⊕msat

r2
r̂
r

(2.10)

As evident, the magnitude of the forces are the same but they are pointing in the opposite
direction, as denoted by the negative sign on satellite’s force and positive sign on the primary
body’s force.

Grouping the equation together and solving them together for ¨̂r we can get:

¨̂r = −Gm⊕
r2

ṙ
r
− Gmsat

r2
ṙ
r

(2.11)

or

¨̂r = −G(m⊕ + msat)

r2
r̂
r

(2.12)

This is the two‐body equation.
In most cases, the difference of mass between the primary body and the orbiting body is

very significant, with the orbiting body smaller by a few orders of magnitude. We can utilize
the standard gravitational parameter µ, defined as the product of gravitational constant and
mass, or:
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µ = G(m1m2) (2.13)

Because themass of the primary body is many order of magnitude bigger than the orbiting
body, we can write it as

µ = Gm⊕ (2.14)

As such, the two body‐equation can be rewritten by ignoring the orbiting body’s mass and
replacing with µ :

¨̂r = − µ

r2
r̂
r

(2.15)

Vallado and McClain, 2013

2.2 Classical Orbital Elements

2.2.1 Introduction to Parameterization and COE

A trajectory of orbiting body can be described in a Cartesian coordinate system using 2 vectors.
The vectors are position(r) and velocity(v). Using the aforementioned inertial‐frame, we can
define that the origin of the coordinate system is the primary body as a center mass, and the
frame of reference is not rotating. The direction of X axis is the vernal(March) equinox, the
XY plane is the primary body’s equatorial plane, while the Z axis coincides with the primary
body’s axis of rotation and pointing upwards. (Curtis, 2014)

In this frame of reference, in component form, the vector is given by:

r = XÎ + YĴ + ZK̂

v = vx Î + vy Ĵ + vzK̂

While these two vectors can define an orbit, amore understandable orbit definition can be
made. These two vectors can be parameterized into six classical orbital elements (COE). These
six COEs can define an orbit in a more approachable way. The process of converting from r
and v vector into orbital elements is called parameterization.

2.2.2 Semimajor Axis (a)

The semimajor axis defines how big the orbit is. It is the sum of ra (radius of apoapsis) and
rp (radius of periapsis) divided by two. This is the average distance between the center of the
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FIGURE 2.6: Cartesian Vectors of Position and Velocity. Image credit: (0.39,
2004)

bodies. (Federal Aviation Administration, 2018)

a =
ra + rv

2
(2.16)

The semimajor axis can also be computed using the Vis‐Viva equation, which describes
the interaction between the two bodies by considering energy. Computing the semimajor axis
using Vis‐Visa equation is as follows (Vallado and McClain, 2013)

a = (
2
r
− v2

µ
)−1 (2.17)

2.2.3 Eccentricity (e)

Eccentricity defines the shape of the orbit. It ranges from zero to one, higher value means
the orbit is more elongated, i.e., a perfectly circular orbit would have an eccentricity of zero,
while a parabolic orbit would have a value of eccentricity approaching infinity. Eccentricity
can be computed as the ratio of the distance between the two foci to the length of major
axis (twice the semimajor axis). However, this only applies to elliptical orbits (Federal Aviation
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FIGURE 2.7: Visualization of the six Classical Orbital Elements. Image credit:
Lasunncty, 2007

Administration, 2018) :
e =

2c
2a

(2.18)

To consider for all conic section, it can be defined as (Vallado and McClain, 2013):

a =
a − rp

a
=

ra − a
a

(2.19)

2.2.4 Inclination (i)

Inclination defines the tilt of the orbit. The angle is measured from the equatorial plane of
the primary body. (federal_aviation_administation_describing_2018) Mathematically, it is
the angle between the unit vector K̂ to the angular momentum ĥ The range is from 0 deg to
180deg ‐ orbit that are inclined at 0deg and 180deg are called equatorial orbits, while other
orbits are called inclined orbits. Because of the measurement of the angle, Inclination also
defines the direction the satellite is rotating. Angles from 0deg to 90deg rotates with the pri‐
mary body ‐ these are called prograde orbits. Angles from 90deg to 180deg rotates opposing
the primary body ‐ called retrograde orbits. (Vallado and McClain, 2013). An orbit at exactly
90deg are called polar orbits, because they pass through the poles. Inclination can be written
mathematically as:

COS(i) =
K̂ · ĥ

|K̂| · |ĥ|
(2.20)
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2.2.5 Longitude of Ascending Node (Ω)

Longitude of Ascending Node describes the orientation of the orbit to a reference direction.
The reference is the Î unit vector, and the angle is measured eastward from the unit vector.
When the satellite passes through the equatorial plane from the south to north, the point is
called ascending node. Likewise, when the satellite passes through from north to south, the
point is called descending node. For equatorial orbits, the Longitude of Ascending Node is
undefined. The range of Ω is 0deg to 180deg.

2.2.6 Argument of Periapsis (ω)

Argument of Periapsis describes the location of the periapsis. It is the angle measured from
the ascending node, in direction with the sateliite’s motion, to the periapsis. Perfectly circular
or equatorial orbit do not have argument of periapsis because they don’t have periapsis or
ascending node. The range of ω is 0deg to 180deg.

2.2.7 True Anomaly (v)

True anomaly describes the location of the satellite at that instant. It is measured from the
periapsis. As perfectly circular orbits do not have periapsis, it is undefined for perfectly circular
orbit.

2.3 Conversion Algorithm Between Position and Velocity Vectors to
Classical Orbital Elements

Defining an orbit using state vectors or classical orbital elements have their own benefits. An
orbit defined using state vectors are easier to be analyzed numerically, however it is not really
visualizable. Likewise, an orbit defined using classical orbital elements aremuchmore easier to
be imagined. As such, conversion between these two are common. These conversion between
the two are as follows:

2.3.1 From RV to COE

To convert from state vectors to classical orbital elements, we need some intermediate vectors.
The first one is the angular‐momentum vector, defined as:

ĥ = r̂ × v̂ (2.21)
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The second intermediate vector is the node vector. This is the vector pointing to the node.
A magnitude of zero indicates that the orbit is equatorial.

n̂ = K̂ × ĥ (2.22)

Then, we can start computing the classical orbital elements. The first item to be deter‐
mined is the eccentricity. Equation for eccentricity based upon vectors is:

ê =
(v2 − µ

r )r̂ − (r̂ · v̂)v̂
µ

(2.23)

Then, compute the specific mechanical energy. This equation is valid for any orbit:

ξ =
v2

2
− µ

r
(2.24)

We then have two orbit possibilities. The first one is parabolic, with eccentricity of 1.0.
The second one is non‐parabolic orbit, with the value of eccentricity anything but 1.0.

For non‐parabolic orbit, we can determine the semimajor axis as:

a = − µ

2ξ
(2.25)

and the semiparameter is defined as:

p = a(1 − e2) (2.26)

For parabolic orbits (e = 1.0), the semimajor axis is infinite (∞) and the semiparameter is:

p =
h2

µ
(2.27)

We then compute the angles, starting from the inclination (i), given by

cos(i) =
hK

|ĥ|
(2.28)

For longitude of ascending node, (Ω), given by:

cos(Ω) =
nI

|n̂| IF(nJ < 0) THENΩ = 360deg − Ω (2.29)

For argument of periapsis, (ω), given by:

cos(ω) =
n̂ · ê

|n̂| · |ê| IF(eK) < 0 THENω = 360deg − ω (2.30)
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For true anomaly, (v), given by

cos(v) =
r̂ · r̂
|ê||r̂| IF(r̂ · v̂ < 0) THENv = 360deg − v (2.31)

2.3.2 From COE to RV

This algorithm is the reverse of the previous one ‐ it transforms from classical orbital elements
into state vectors. First of all, to account for all types of orbits, semiparameter is used instead
of semimajor axis. The formula for semiparameter is as follows:

p = a(1 − e2) (2.32)

We then consider a new coordinate system. The coordinate system is centered in the or‐
bit’s focus, and the orbital plane lay flat in the coordinate system. This coordinate system is
called as Perifocal coordinate system. To find the r in perifocal coordinate system, it is defined
as:

r̂PQW =


p cos(v)

1+e cos(v)
p sin(v)

1+e cos(v)

0

 (2.33)

Then the velocity vector in perifocal coordinate system is defined as:

v̂PQW =


−
√

µ
p sin(v)√

µ
p (e + cos(v)

0

 (2.34)

The last step is to convert from perifocal coordinate system to geocentric equatorial sys‐
tem, by utilizing rotation matrices:

r̂I JK = [ROT3(−Ω)][ROT1(−i)][ROT3(−ω)]r̂PQW (2.35)

v̂I JK = [ROT3(−Ω)][ROT1(−i)][ROT3(−ω)]v̂PQW (2.36)

2.4 Orbit Classification

All satellites orbiting the Earth are not located nor using the exact same orbit. Each satellite has
their own trajectory and orbit, which alters their behavior around the Earth. As evident from
the Kepler’s Law, a lower altitude satellite will go around the Earth way faster than a satellite
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orbiting higher, for example. Another example is a satellite orbiting with high inclination will
cover more ground area than a satellite with low inclination. These various types of orbits are
used accordingly to each individual satellite’s mission objectives. (Catalog of Earth Satellite
Orbits)

To aid in identification of orbit types, orbits can be classified according to several param‐
eters: their altitude, the body they are orbiting, inclination, and their eccentricity. For the
purposes of this research, which focuses on Earth‐orbiting satellites, the classification of inter‐
est is orbit classification through their altitude.

2.4.1 Low Earth Orbit

Low Earth Orbits are orbits located starting from the boundary of Earth’s atmosphere to space
(100 km, the Kármán line) until 1000 km from the planet’s surface. It’s versatility and ease
of access (due to its lower altitude) makes LEO one of the most commonly used orbit. Due
to it’s close proximity, it is used for imaging satellites to create high resolution images. Space
stations, such as the International Space Station, is also located at LEO because its easier for
astronauts to travel back and forth. As the satellite in LEO orbits faster than in the higher orbit
(a LEO satellite takes around 90minutes to orbit the Earth), this orbit is also useful for missions
that require fast Earth coverage. Lesser constrains also makes the Low Earth Orbit as the one
of the most preferred orbit for Earth monitoring satellites. (Low Earth Orbit)

FIGURE 2.8: Low Earth Orbit. Image credit: Low Earth Orbit

18\80



PRELIMINARY ORBIT TRANSFER DESIGN FROM LOW EARTH ORBIT TO GEOSTATIONARY EARTH
ORBIT

However, Low Earth Orbit might not be as useful for communication satellites. Their high
velocity makes ground tracking harder, and also the make the satellite appear for a briefer
time according to a ground observer. The allure for communication satellite in Low Earth Orbit
is not lost, however, as their lower altitude allows for shorter latency. A way to circumvent
this weakness is by creating a constellation of hundreds or even thousands of satellites, which
is a method currently used by Starlink, a global broadband network currently being built by
US‐based space start‐up SpaceX. (Caleb Henry, 2020)

2.4.2 Medium Earth Orbit

Medium Earth Orbit are classification of orbits located between Low Earth Orbit (1000 km)
until below Geosynchronous Orbit (35 786 km). It is used for various purposes, but the most
prominent one are for navigation satellites (Global Navigation Satellite System). 3 major GNSS
are located entirely within Medium Earth Orbit: Global Positioning System (US), Galileo (EU),
and GLONASS (Russia). These navigation satellites provide services that blankets the entire
Earth. European Space Agency, 2020b

FIGURE 2.9: Galileo Satellite Constellation. Image credit: European Space
Agency, 2020b

2.4.3 Geosynchronous Orbit and Geostationary Orbit

As consequence of Kepler’s Law, there exist an altitudewhere the speed of the orbiting satellite
matches the rotational speed of Earth. Therefore, according to a ground observer, the satellite
appear fixed to the sky. This orbit is called Geosynchronous Orbit and its location is exactly 35
786 km above sea level. The satellite may drift to the North nor the South, but it will always
appear at the same longitude. (Catalog of Earth Satellite Orbits)

If the orbit is circular and located directly above the equator, it will stay exactly at the same
place, never drifting to the south nor north. It will always stay over that single location. This
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case is called a Geostationary Orbit. This ”fixed” location consequently enable various mission
profiles. As it is always fixed, it is extremely useful for weather satellites, which requires con‐
stantmonitoring of the same ground area tomonitor cloud, water vapor, andwindmovement.
They are also useful for home satellite television, which enables the antenna to stay fixed and
no need for active tracking. Some communication satellite also orbits in Geostationary Orbit.
One last advantage is that because Geostationary orbit is quite high, satellite on this orbit can
cover much more surface area than a satellite in lower orbit, lowering the number of satellite
needed for a constellation with huge coverage. European Space Agency, 2020b

FIGURE 2.10: Geostationary EarthOrbit. Image credit: European SpaceAgency,
2020a

2.4.4 High Earth Orbit

High Earth Orbit revers to any orbit higher than 35 768 km that is still within the Earth’s sphere
of influence. These orbits are very niche and rarely used, not to mention launching satellites
to this altitude is quite difficult. A special type of orbit however, exist in high earth orbits. As
the Sun and Earth exert force to each other, there exist points where the forces cancel out.
These points are called Lagrange Points, and satellites placed in this orbit will move together
with the Earth around the sun, fixed in place in Sun‐Earth reference system. 5 Lagrange points
exist, however only two are stable, called L4 and L5, while the rest requires constant mainte‐
nance. Example of satellites in Lagrange points areWMAP (a backgroundmicrowave radiation
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mapper) and the future JamesWebb Space Telescope, an infrared telescope. (Catalog of Earth
Satellite Orbits)

FIGURE 2.11: Earth’s Lagrange Points. Image credit: Catalog of Earth Satellite
Orbits

2.5 Orbital Maneuvering

2.5.1 Introduction to Orbital Maneuvering

To be useful, a satellite needs to be put on an exact orbit that facilitates its mission objectives.
This orbit may not be achievable during launch, the satellite needs additional tuning, or even
the desired location, such as orbiting other heavenly bodies, are straight up not achievable in
a single orbit. Therefore, the satellite needs to move around after orbiting. This movement
from one orbit to another orbit is called orbital maneuvering. Orbital maneuvering covers all
changes done to a spacecraft’s orbit after it has gone into an orbit. (Vallado andMcClain, 2013)

In general, orbital maneuvering can be classified into 3 groups: planar, co‐planar, and fixed
delta‐V maneuver. These maneuvers are achieved by doing burns, adding or subtracting a
spacecraft’s velocity using its propulsion. These burns can be considered instantaneous or
continuous, for example in low‐thrust burns. Force applied in the orbit plane can change ec‐
centricity, semimajor axis, and argument of periapsis, while burns normal to the plane can
change inclination and right ascension of the ascending node (RAAN). The most common goal
of orbital maneuvering is to minimize fuel required (delta‐V), but sometimes time is also criti‐
cal. (Vallado and McClain, 2013)
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2.5.2 Rocket Equation and Delta V

To move around in vacuum, almost all propulsion system rely on the concept of momentum.
Mass, typically gas, is spewed out of a nozzle and then due to Newton’s 3rd Law’s, the system
got pushed in the opposite direction. This concept can be applied in various manners: in a
chemical rocket, fuel is mixed with an oxidizer and then ignited. This is the origin of the word
”burn”, describing the act of igniting this mixture to achieve change in velocity. The equation
governing this is called the Rocket Equation, also called Tsiolkovsky’s Equation, after Konstantin
Tsiolkovsky, a Russian scientist who first wrote this equation in 1903. (Pettit, 2012)

The rocket equation is as follows:(Ideal Rocket Equation)

∆V = Ispg0ln
m0

m f
(2.37)

where

• ∆V is the change of velocity of the vehicle

• Isp is specific impulse

• g0 is gravity acceleration

• m0 is the initial mass with propellant (wet mass)

• m f is the final mass after burn (dry mass)

Delta‐V can also be described as a form of energy. When denoting where the spacecraft
wants to go, the energy required to go there is denoted in form of ”Delta‐V required”. This
number is then compared to the number of Delta‐V available to the spacecraft. If the number
of delta‐v available is higher than the number of delta‐v required, the spacecraft can accom‐
plish the maneuver, but if it isn’t, then the maneuver is not possible. Consequently, mission
planner try to reduce the amount of delta‐v required through various means. (Pettit, 2012)

2.5.3 Hohmaan Transfer

Hohmann transfer is a type of co‐planar maneuver, meaning that the initial orbit and the final
orbit lies in the final plane, so changes can only be observed on the orbit’s size, shape, and
argument of perigee. Hohmann transfer is named after its inventor, Walter Hohmann. In this
transfer, there are two tangential burns, and the flight path angle must be exactly zero. The
initial or the final orbit can be elliptical or circular, and the transfer orbit between those two
are always elliptical or circular, never parabolic or hyperbolic, as a requirement for the second
tangential burn. (Vallado and McClain, 2013)
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FIGURE 2.12: Hohmann Transfer, a maneuver using two burns. Image credit:
Vallado and McClain, 2013

2.5.4 Bi‐elliptic Transfer

A bi‐elliptical transfer is a variant of Hohmann transfer, where two Hohmann transfer are per‐
formed in succession. The spacecraft is first put into an initial transfer orbit, then after a
tangential burn, put into a second transfer orbit, and then put into the final orbit. As with
Hohmann transfer, the flight path angle during the burn must also be exactly zero. (Vallado
and McClain, 2013)

FIGURE 2.13: Bi‐elliptic Transfer, two Hohmann transfer in succession. Image
credit: Vallado and McClain, 2013

2.5.5 Non‐co‐planar Maneuvers

To change an orbit inclination and/or right ascension of the ascending node, we will need non‐
coplanar maneuvers. A non‐co‐planar maneuver is a burn that is applied out of orbital plane.
There are 3 possibilities of a non‐co‐planer burn: a change in inclination, a change in right
ascension of the ascending node, or a change of both. A non‐co‐planar maneuver is necessary

23\80



PRELIMINARY ORBIT TRANSFER DESIGN FROM LOW EARTH ORBIT TO GEOSTATIONARY EARTH
ORBIT

in real life because the location of the launch site dictates where an orbit will be. Considering
satellites need to be launched from a dedicated facility, the location of that facility will most
likely put the satellite in an undesirable location. Therefore, a non‐co‐planar burn is necessary
to fix this issue. Another issue why non‐co‐planar burn is needed is when there are timing
constrains regarding the satellite’s launch. (Vallado and McClain, 2013)

2.6 Satellite Orbit Definition and Two‐Line Element (TLE)

Once a satellite is in orbit, it is important to keep track of its location and its current orbit.
Without the ability to track it or the ability to correctly describe its orbit, a satellite capability
is much less reduced. To describe a satellite’s orbit, the classical orbital elements is one of
methods available. Still, a physical tracking of the object must first be done.

One of the most common way to know a satellite’s orbit and location is using NORAD’s
Two Line Element sets. The Joint Space Operations Center (JSPOC), operated by the United
States’ Air Force Space Command, observe and track each individual object currently orbiting
the Earth. After some processing, the data is then distributed to the public for free in two‐line
format ‐ hence the name. (Vallado and Cefola, 2012)

Based upon data from the TLE, the satellite’s exact orbit and location can be determined.
(Transilvania University of Braşov, Braşov, Romania et al., 2016) An example TLE data is as
follows:

ISS (ZARYA)
1 25544U 98067A 20182.51943373 .00000997 00000-0 25859-4 0 9996
2 25544 51.6454 282.4729 0002513 101.4450 8.1574 15.49473510234088

2.7 Perturbation to a Satellite’s Orbit

The initial two‐body equation is written assuming that the interaction between the body is
only due to the gravitational forces between each other. However, in the real world this is not
the case. When there is any additional forces that disturb this equation exist, the deviation is
called a perturbation. Accounting for perturbation, the two body equation becomes: (Curtis,
2014)

¨̂r = −G(m⊕ + msat)

r2
r̂
r
+ p (2.38)

where P is a vector that accounts for all perturbation beside the gravitational force be‐
tween two body. Three particular perturbation of interest are shown below.
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TABLE 2.1: Elements inside a Two‐Element Set data.

Line 0

Column Example Description
1‐24 ISS (ZARYA) Name of the tracked object
Line 1

Column Example Description
1 1 Line Number
3‐7 25544 Satellite Catalog Number
8 U Satellite Classification, U for Unclassifed
10‐17 98067A International Designator
19‐32 20182.51943373 Element Set Epoch (UTC)
34‐43 .00000997 1st Derivative of Mean Motion with Respect to Time
45‐52 00000‐0 2nd Derivative of Mean Motion with Respect to Time, Decimal Point Assumed
54‐61 25859‐4 B* Drag Term
63 0 Element Set Type
65‐68 999 Element Number
69 6 Checksum
Line 2

Column Example Description
1 2 Line Number
3‐7 25544 Satellite Catalog Number
9‐16 51.6454 Orbit Inclination (degrees)
18‐25 282.4729 Right Ascension of Ascending Node (degress)
27‐33 0002513 Eccentricity (decimal point assumed)
35‐42 101.4450 Argument of Perigee (degrees)
44‐51 8.1574 Mean Anomaly (degrees)
53‐63 15.49473510 Mean motion (revolutions/day)
64‐68 23408 Revolution Number at Epoch
69 8 Checksum

2.7.1 Atmospheric Drag Perturbation

Atmosphere Drag perturbation is one of the most evident perturbation on a spacecraft trajec‐
tory. Despite that 99 percent of all atmosphere is below 100 km (called the Karman Line, the
recognized boundary between Earth and space), however, due to the high speed of the space‐
craft, evenminuscule amount of air can be significant. The drag will slow down the spacecraft,
eventually lowering down the spacecraft and make it de‐orbit. (Curtis, 2014)

As atmosphere decreases with altitude, this effect is most pronounced in Low Earth Orbit.
To combat the decreasing altitude due to drag, a spacecraft must be equipped with a sort of
thruster to combat its altitude loss. This is called station keeping. Without station keeping,
a satellite in Low Earth Orbit will eventually de‐orbit. An example of this is the Hubble Space

25\80



PRELIMINARY ORBIT TRANSFER DESIGN FROM LOW EARTH ORBIT TO GEOSTATIONARY EARTH
ORBIT

Telescope, which was last boosted to its orbit in 2009, and will eventually de‐orbit in 2025.
Curtis, 2014

FIGURE 2.14: The Density of the Atmosphere Up to 1000 km According To US
Standard Atmosphere. Image credit: Curtis, 2014

Based upon the drag equation:

D =
1
2

ρv2
relCD A (2.39)

the acceleration p for the calculation can be written as

p = −1
2

ρvrel(
CD A

m
)vrel (2.40)

2.7.2 Oblateness Perturbation

While in many cases the Earth is considered a sphere, it is, however, not a truly spherical. It is
actually an oblate spheroid ‐ a sphere with a slight bump along the equator. Due to this, the
gravity of Earth is not exactly uniform, but rather changes with latitude and radius. The Earth
mass density is also not uniform, which makes its gravity varies.

This oblateness have an effect on the satellite orbit. When written, the perturbation Φ is
given by invite series:

Φ(r, ϕ) =
µ

r

∞

∑
k=1

Jk(
R
r
)kPk(cos ϕ) (2.41)

Jk in the equation is the observed zonal harmonics ‐ a dimensionaless number that is
unique to each planetary body. As it is a infinite series, the J number extends to infinity, but
the most significant one is J2, where the value is J2 = 0.00108263. (Curtis, 2014)

Perturbation acceleration p due to J2 perturbation can be written as:

p =
3
2

J2µR2

r4 [
x
r
(5

z2

r2 − 1)î +
y
r
(5

z2

r2 − 1) ĵ +
z
r
(5

z2

r2 − 3)k̂] (2.42)
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2.7.3 Third‐Body Perturbation

In space, there are various heavenly bodies which can affect the trajectory in various ways.
When the effect of a third body’s gravity is considered, is it called a three‐body problem. For
a satellite within the Earth’s sphere of influence, one heavenly body with a noticeable effect is
the Earth’s moon. The Sun can also be considered as another third‐body perturbation.

FIGURE 2.15: Effect of the Moon on a spacecraft as a third‐body perturbation.
Image credit: Curtis, 2014

2.8 Lambert’s Problem

In the 18th Century, J. H. Lambert, an astronomer, had a problem determining an orbit. If two
position vector and the time of flight of them is known, how would the trajectory would be?
According to him, the time of flight between point P1 and P2 should be independent of the
eccentricity of the orbit. Rather, it depends on the following factors: the summation of the
position vectors (r1,r2), the length of the semi‐major axis a and the distance of c, the straight
line between point P1 and P2. (Curtis, 2014)

This problem of determining the trajectory between these two point is therefore known
as Lambert’s Problem. It is also known as an orbital boundary value problem. Due to its im‐
portance in the world of astrodynamics, as orbit determination is crucial, it is frequently re‐
searched. (Izzo, 2015)
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FIGURE 2.16: Visualization of Lambert’s Problem on a single orbit as a way for
orbit determination. Image credit: Curtis, 2014

Although devised to find a single orbit between two point, (orbit determination), the Lam‐
bert Problem can also be considered as a transfer problem between two orbits. This is due to
the constrains on the Lambert problem, which are the position vectors, semimajor axis, and
chord distance. Thus, by solving Lambert’s problem, it can also be used to find a way (trajec‐
tory) to move from one orbit to other orbit. (Vallado and McClain, 2013)

In case of finding an orbit between two location, there are two possible direction to reach
the same point: the short way (∆v < 180deg)) or the long way (∆v > 180deg). If the orbit
is considered as taking the shorter way, the orbit has a value of transfer method of tm = +1,
while moving in the opposite direction has a value of transfer method tm = −1. If the trans‐
fer method is known, the Lambert’s Problem has one unique solution. (Vallado and McClain,
2013)

FIGURE 2.17: When finding the trajectory between two point on an orbit,
there’s the possible longway and the possible short way. Image credit: Vallado

and McClain, 2013

As Lambert’s Problem is frequently researched, there have been multiple ways to solve
it. Vallado (Vallado and McClain, 2013) listed multiple possible algorithms to solve Lambert’s
problem, which are:

• Lambert‐Minimum Energy: The Lambert‐Minimum Energy algorithm is based upon ge‐
ometrical analysis of the problem and solved using geometric principles. This solution
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by Lambert is applied best for orbit determination and also only account for a single rev‐
olution between point P1 and P2. This Lambert‐Minimum Energy algorithm also only
applies on elliptical transfer.

• Lambert‐Gauss : Gauss’ proposal to solve Lambert’s problem utilize the area of triangles
formed as the satellite sweeps across its orbit. This method works best only when the
position of the vectors are close apart, when the location of the vectors are far enough,
the Lambert‐Gauss solution won’t converge into an answer.

• Lambert‐Thorne :This is one of the most modern solution to Lambert’s problem. It is
applicable for any time difference between point and besides working on elliptical orbit,
also works on hyperbolic orbit. Lambert‐Thorne solution focuses on the transfer time
between the two orbit. As it is applicable to a wide array of orbits, the Lambert‐Thorne
solution has multiple algorithms, accounting for the shape of the orbit and whether the
satellite is taking the short way or the long way. The Lambert‐Thorne solution is also one
of the most complicated solution to Lambert’s Problem.

• Lambert‐Battin : Another modern algorithm to solve Lambert’s Problem, this method is
based on Gauss’ solution but mademore robust. It is also can account for the possibility
of 180 degrees difference between the two points, which, on other solution, is difficult
as now the distance of the short way and the longway is exactly the same. As it is a result
of development of Gauss’ solution, it uses geometric analysis to solve the problem but
rather than using triangles, it uses a parabolic mean point radius, a new term coined by
Battin to explain his new calculation.

• Lambert‐Universal Variables: This is a universal solution that can be applied to any type
of transfer orbit, making it extremely useful to various problems. It’s weakness is that
is it not as robust as the other techniques, meaning that sometimes it fails to give a
solution.

For the purpose of this literature review, the Lambert‐Universal Variable algorithm to solve
the Lambert’s Problem is shown below, based upon Curtis’ book. (Curtis, 2014)

1. Determine exactly the vectors r̂1 and r̂2, and also the transfer time ∆t.

2. Calculate r1 and r2 using the following equation:

r1 =
√

r̂1 · r̂1 (2.43)

r2 =
√

r̂2 · r̂2 (2.44)

29\80



PRELIMINARY ORBIT TRANSFER DESIGN FROM LOW EARTH ORBIT TO GEOSTATIONARY EARTH
ORBIT

3. Select whether the direction taken is the short way or the long way. The short way is
also called ”prograde trajectory” and the long way is called ”retrograde trajectory”.

4. Calculate the ∆θ depending on the context. For prograde trajectory:

∆θ = cos−1(
r̂1r̂2

r1r2
) i f (r̂1 × r̂2)z ≥ 0 (2.45)

∆θ = 360deg − cos−1(
r̂1r̂2

r1r2
) i f (r̂1 × r̂2)z < 0 (2.46)

For retrograde trajectory:

∆θ = cos−1(
r̂1r̂2

r1r2
) i f (r̂1 × r̂2)z < 0 (2.47)

∆θ = 360deg − cos−1(
r̂1r̂2

r1r2
) i f (r̂1 × r̂2)z ≥ 0 (2.48)

5. Find a variable A, with the following equation

A = sin∆θ

√
r1r2

1 − cos∆θ
(2.49)

6. Calculate the value of z, which will tell us the shape of the orbit. A negative z value
means hyperbolic orbit, a zero z means parabolic orbit, and a positive z means elliptical
orbit. The equation of z is as follows:

√
µ∆t = [

y(z)
C(z)

]
3
2 S(z) + A

√
y(z) (2.50)

Solving for z requires using iterative methods which are shown below:

F(z) = [
y(z)
C(z)

]
3
2 S(z) + A

√
y(z)−√

µ∆t (2.51)

F′(z) = [
y(z)
C(z)

]
3
2 { 1

2z
[C(z)− 3

2
S(z)
C(z)

]+
3
4

S(z)2

C(z)
}+ A

8
[3

S(z)
C(z)

√
y(z)+ A

√
C(z)
y(z)

] (z ̸= 0)

(2.52)√
2

40
y(0)

3
2 +

A
8
[
√

y(0) + A

√
1

2y(0)
(z = 0) (2.53)

zi+1 = zi
F(zi)

F′(zi)
(2.54)
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7. Find y by:

y(z) = r1 + r2 + A
zS(z)− 1√

C(z)
(2.55)

8. Calculate Lagrange f , g, and ġ through:

f = 1 −
[
√

y(s)
c(z) ]

2

r1
C(z) = 1 − y(z)

r1
(2.56)

g =
1
√

µ
{[ y(z)

C(z)
]

3
2 + A

√
y(z)} − 1

√
µ
[

y(s)
C(s)

]
3
2 S(z) = A

y(z)
µ

(2.57)

ḟ =

√
µ

r1r2

√
y(z)
C(z)

[zS(z)− 1] (2.58)

ġ = 1 −
[
√

y(s)
c(z) ]

2

r2
C(z) = 1 − y(z)

r1
(2.59)

9. After obtaining the Lagrange points, plug it in to obtain the value of velocity vector v̂1

and v̂2:
v̂1 =

1
g
(r̂2 − f r̂2) (2.60)

v̂2 =
1
g
(ġr̂2 − r̂1) (2.61)

10. As the value of the position vector and the velocity vector is now known, it can be in‐
serted into a converter to convert it into its classical orbital elements.

Besides the regime shown above, a new approach by Izzo (Izzo, 2015) is also presented.
This new approach of Izzo is further optimized ‐ on most cases it only requires two iteration
for orbit with one revolution considered, andmuch simpler in complexity, designed in modern
times for modern computing. This algorithm will be further detailed in the next chapter and
will be used as the Lambert solver for this research.

2.9 Developments of Spacecraft Trajectory Optimization

Advancement in space propulsion technologies has pushed the development of spacecraft
trajectory optimization as well. In the past, the primary method of propulsion is the chemical
rocket, which has an instantaneous (relative to themission duration) change of velocity. Today,
however, there are various method of propulsion with high efficiency, but has very low thrust,
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such as ion engines. These engines burn for a very long time, or even continuously during the
mission. (Conway, 2010)

In instantaneous cases, the trajectory between burn can be considered Keplerian orbits,
and for interplanetary travel, planetary flyby is also considered. But for low‐thrust engines,
the burn is continuous ‐ it can be even burn during the entire trajectory, altering it as it goes.
This significantly complicates the control problem. (Conway, 2010)

For recent developments in mission trajectory design, this will be divided into two main
parts. The first part is for near‐Earth satellite, and the second one is for deep space exploration
(above 2 000 000 km or outside of Earth’s sphere of influence). For deep space exploration,
additional consideration must be taken into account compared to near‐Earth mission, such as
perturbation from other planetary bodies or planetary fly‐by.

2.9.1 Missions around Earth’s Sphere of Influence

Optimal LEO‐GEO Intermediate Acceleration Orbit Transfer Using Nuclear Propulsion

This research by J. Albert studied a usage of a low‐thrust nuclear propulsion with a constant
acceleration of around 10−2g. For this research, the optimal goal is not the least amount of
propellant but rather the least amount of time. The magnitude of thrust was held constant
but its acceleration vector was optimized. The study shown that the amount of time needed
to go from LEO to GEO in this setting are sensitive to departure and arrival points. (Kechichian,
1997)

Minimum Fuel LEO Aeroassisted Orbit Transfer of Small Spacecraft with Inclination Change

Research by L. Darby and V. Rao focuses on the usage of small spacecraft, which can be de‐
ployed rapidly, to move within the atmosphere to increase its effectiveness. This orbit transfer
is known as aeroassist. The initial orbit is a circular orbit. Solving for the nonlinear optimal
control problem found that the spacecraft has the least amount of burn necessary (impulsive
in this case) if the spacecraft enters the atmosphere exactly twice. The study also take into
account the heating amount the spacecraft received when it went through the atmosphere.
(Darby and Rao, 2011)

2.9.2 Deep Space Exploration

Hayabusa‐2

Hayabusa‐2 is an asteroid sample returnmission by JapanAerospace ExplorationAgency (JAXA).
Hayabusa‐2, as the name implies, is the secondmission to return a sample from an asteroid as
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a follow‐up to earlier Hayabusa mission. The target is 1993 JU3 asteroid (now called ’Ryugu’),
an asteroid believed to contain various organic matter and hydrated minerals. (Tsuda et al.,
2013)

One of the technological cornerstone of Hayabusa‐2 is its 4 ion engines, providing 10 mN
thrust each and has a total delta‐V of 2 km/s. This availability of the ion engine is actually the
primary constrain during target selection. 1999 JU3 was selected as the target as it is within
the capabilities of the ion engines and also has plenty of potential scientific discoveries. Thus,
it can be said that propulsion technology affects the spacecraft’s trajectory.

In an ion engine, electric power is the primary factor behind the amount of thrust gener‐
ated. Thus, the trajectory must also consider the amount of sunlight received by the space‐
craft. A method called Nonlinear Sequential Quadratic Programming (NLSQP) was used to
calculate the low‐thrust trajectory. The trajectory must also account for the spacecraft’s re‐
turn to Earth. Another constrain that must be considered are the margin for the ion engines
and margin for launch windows.

FIGURE 2.18: Hayabusa‐2 Trajectory to Ryugu. Image credit: Tsuda et al., 2013

Juno

Juno is the latest mission fromNational Aeronautics and Space Administration (NASA / USA) to
gas giant planet Jupiter. Juno’s primary objectives are to find out the origin and theway Jupiter
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FIGURE 2.19: Hayabusa‐2 Spacecraft. Image credit: Tsuda et al., 2013

develops over time throughmeasurement of Jupiter’s solid core, tracing heavy elements at the
atmosphere, mapping the magnetic and gravity field and also exploring the polar regions of
Jupiter. (Matousek, 2007)

For Juno mission, the spacecraft is spun like a spinning top, with the solar panel extended.
This spinningmotion act as the spacecraft’s attitude control and also the extension of the solar
panel both act as a power plant and also a thermal control.

In order to put Juno into Jupiter’s orbit, Juno was first put into a deep space orbit. Then, 1
year after launch, a burn was initiated to make Juno encounter the Earth (Earth fly‐by), 2 years
after launch. This fly‐by acted as gravity assist that slingshot‐ed Juno to arrive at Jupiter 5.2
years after launch. The trajectory during Jupiter Orbit Insertion (JOI) was made to ensure that
Juno follows a polar, 11 day orbit, while at the same time has high eccentricity, with periapsis
of only 1.06 Jupiter’s radius and apoapsis of 39 Jupiter’s radius. This trajectory was chosen to
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ensure a global coverage of Jupiter while at the same time shields Juno from Jupiter’s magne‐
tosphere.

FIGURE 2.20: Juno’s Trajectory to Jupiter. Image credit: Matousek, 2007

FIGURE 2.21: Juno Spacecraft, showing the extended solar cell array. Image
credit: Matousek, 2007

Earth to Mars using Primer Vector

E. Fitrianingsih and R. Armellin from University of Surrey has calculated a mock spacecraft
trajectory from Earth toMars. The purpose of the study is to find an optimal trajectory that has
a lowest delta‐V. To optimize a trajectory there exist 2methods, the first one is by creating a list
of candidate orbit, directly calculate each one of them, and then select the onewith the lowest
required delta‐v. Another method is by using analysis of the thrust vector, using a method
called primer vector. For this research, the authors opted to use primer vectormethod to verify
instead whether a Earth‐Mars trajectory is already optimal or can be optimized further with
additional burns (correction maneuvers.) The authors created a single orbit, and then tested
the orbit upon the different departure date and transfer duration. The research concluded
that primer vector can be used to determine whether an orbit, based upon its departure time
and its travel time from Earth, can be optimized further or is already at its peak potential.
(Fitrianingsih and Armellin, 2018)
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CHAPTER 3

RESEARCH METHODOLOGY

3.1 Research Outline

To conduct this research, the author has come to this approach:

1. Problem Formulation. The Author formulated the initial problem based upon recent
development in spacecraft trajectory. In this case, the author chose to design various
methods for transferring a satellite from Low Earth Orbit to Geostationary Earth Orbit.

2. Literature Review. The author look upon from reference journals and reference books
in regards to relevant materials to aid the research. This includes research on the ways
the transfer is done, latest development in trajectory optimization, and also research
regarding definitions and space program in general.

3. Building Mathematical Tools. Based upon literature review and research, the Author
builds mathematical tools and programs to do the calculations. These tools are built
using scientific computing, and built in a way that enable various input so the research
data can be varied.

4. Creating A Preliminary SpaceMission. With mathematical tools ready, the Author then
can begin creating a preliminary design for a space mission with the sequence of first
launching to Low Earth Orbit and then to Geostationary Earth Orbit.

5. Comparison of Various Trajectory Methods. The scenarios to achieve this orbit is then
compared between each other to see which one results in the most optimal fuel cost.
The fuel post in this regard is limited to the fuel needed from the initial launch Low Earth
Orbit to Geostationary Earth Orbit. The initial fuel from the launch pad to the parking
Orbit is not considered.

6. Calculation of Possible Payload Mass. Based upon the most optimal launch profile, the
possible payload mass with the selected launcher can be determined using the Rocket
Equation.
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3.2 Scientific Computing

This research utilize computer to calculate the required parameters, hence the name of scien‐
tific computing. This approach was chosen by the author as manual calculation will be tedious
and ineffective. To accomplish this, the author uses several program/software as shown be‐
low.

3.2.1 Python Programming Language

Python is selected as the primary language for this research due to several reasons. The first
one is its long‐standing usage within the scientific community, making plug‐ins and library for
scientific usage widely available. The second reason is due to Python’s user‐friendliness, as
the Author was not trained in using Python before and have to learn from the beginning for
the sake of this program.

3.2.2 Anaconda Platform

Anaconda is a software distribution package made by Anaconda Inc. It is an open source pack‐
age designed to make Python accessible to everyone, from individual users to enterprises.
(About Anaconda Inc) Anaconda accomplishes this by providing various required scientific
package all in one simple installation. The built in manager is called the Anaconda Navigator.
Within the program, users can manage over 7500 scientific plug‐in and packages to choose
which one suit their needs, with the base Anaconda package containing 250 packages. (Ana‐
conda Inc, 2020) Using Anaconda Navigator, the author manages all the required scientific
packages required for this project.

3.2.3 NumPy Package

NumPy is an add‐on package that enables Python to compute numerically. It added a lot of
mathematical functions to Python with its library. It is open source and one of the most im‐
portant scientific library for Python. (About Numpy)

Features of NumPy are the backbone of this project, which requires a lot of NumPy’s built
in calculation regime.As NumPy is included inside the Anaconda distribution, the Author can
use it straight away.
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3.2.4 SciPy Ecosystem

SciPy is a collection of additional scientific libraries for Python. It is a complete tool box for
computational science, which when coupled with NumPy, provides a high performance and
varied computing capability. (About SciPy)

The Author uses SciPy to aid in calculations so the Author doesn’t need to write each indi‐
vidual calculation from scratch.

3.2.5 MatPlotLib Plotter

Matplotlib is a library to enable visualization of computation through Python. Its result are
clear and concise, yet also customizable to fit the user’s specific requirement. Matplotlib is
also expandable to include new features.(Matplotlib)

The Author uses Matplotlib to visualize the calculations which has been done. With Mat‐
plotlib, results can be displayed in a clear and concise manner.

3.3 Building Math Toolbox ‐ Converting from TLE into Orbital Ele‐
ments

3.3.1 Introduction to LAPAN A2

LAPAN A2 is a micro‐satellite developed by Lembaga Penerbangan dan Antariksa Nasional (LA‐
PAN) of Indonesia. It is classified as a microsatellite and is the second one from LAPAN. It is
built upon LAPAN’s first microsatellite, LAPAN‐TUBSAT, which was made with cooperation with
Technical University Berlin, hence the name. Based upon experience building and operating
LAPAN‐TUBSAT, LAPAN‐A2 was developed indigenously, all made in house in LAPAN facilities,
which were upgraded to accommodate the LAPAN‐A2 program. (LAPAN‐A2)

The selection of LAPAN‐TUBSAT as its basis and its size as a microsatellite is due to cost
constrains. LAPAN hoped that the development of these microsatellite, even though only uti‐
lize small amount of resources, can be a stepping stone for a space program in the future that
can help the advancement of Indonesia as awhole. (Hardhienata, Triharjanto, andMukhayadi,
2011)

The main goal of the program is prove LAPAN’s capability in designing, building and op‐
erating a microsatellite all within Indonesia. As its main mission, LAPAN‐A2 is to observe the
Indonesian vast archipelago using its built in camera, with a resolution of 6meters. In addition,
LAPAN‐A2 is also equipped with a Automatic Identification System (AIS) to identify maritime
traffic around Indonesia, providing much needed patrol capability along Indonesian waters.
Another payload inside LAPAN‐A2 is an Automatic Packet Reporting System (APRS), used for
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communication in case of natural disaster in the archipelago and also a amateur radio voice
repeater. These two devices are operated in conjunction with Indonesian Amateur Radio Or‐
ganization or ORARI.(Hardhienata, Triharjanto, and Mukhayadi, 2011)

For its orbit, as it’s primary mission is to monitor Indonesia, it is placed at Low Earth Orbit
along the equator, with a small 8 degree inclination. It was launched as a secondary payload to
Indian observatory satellite called ASTROSAT. (Hardhienata, Triharjanto, andMukhayadi, 2011)

FIGURE 3.1: 3D Model of LAPAN A2. Image credit: Hardhienata, Triharjanto,
and Mukhayadi, 2011

3.3.2 Obtaining LAPAN A2 data from Celestrak

First, data regarding LAPAN‐A2 must be obtained. This data is obtained via public service at
https://celestrak.com/. The data regarding LAPAN‐A2 from Celestrak in Two‐Line Element for‐
mat is as follows:

LAPAN-A2
1 40931U 15052B 20168.74122108 .00000632 00000-0 -12038-5 0 9993
2 40931 5.9950 340.4753 0013975 268.9107 90.9697 14.76636552255154

This data was taken on 16th June 2020. The Celestrak website only takes into account the
latest TLE data with no historical records, however this is enough for the starting point of our
calculation as in the later steps this data will be propagated.

3.3.3 Conversion Regime

As the contents of TLE data cannot be used directly, it ismust be converted into Classical Orbital
Elements. The data is first interpreted as follows:
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TABLE 3.1: Two Line Element of LAPAN A2.

Line 0

Column Data Description
1‐24 LAPAN‐A2 Name of the tracked object
Line 1

Column Data Description
1 1 Line Number
3‐7 40931 Satellite Catalog Number
8 U Satellite Classification, U for Unclassifed
10‐17 15052B International Designator
19‐32 20168.74122108 Element Set Epoch (UTC)
34‐43 .00000632 1st Derivative of Mean Motion with Respect to Time
45‐52 00000‐0 2nd Derivative of Mean Motion with Respect to Time, Decimal Point Assumed
54‐61 ‐12038‐5 B* Drag Term
63 0 Element Set Type
65‐68 999 Element Number
69 3 Checksum
Line 2

Column Data Description
1 2 Line Number
3‐7 40931 Satellite Catalog Number
9‐16 5.9950 Orbit Inclination (degrees)
18‐25 340.4753 Right Ascension of Ascending Node (degress)
27‐33 0013975 Eccentricity (decimal point assumed)
35‐42 268.9107 Argument of Perigee (degrees)
44‐51 90.9697 Mean Anomaly (degrees)
53‐63 14.76636552 Mean motion (revolutions/day)
64‐68 25515 Revolution Number at Epoch
69 4 Checksum

Based on the data above, the particular elements of interest is from the second line of the
set, which contains data that is readily converted into COEs. However, the true anomaly and
the semimajor axis are not expressed explicitly, thus the data must be converted to obtain the
value of true anomaly and semimajor axis.

To obtain semi major axis, the value can be obtained from mean motion via Kepler’s Third
Law (Vallado and McClain, 2013):

n = 2

√
µ

a3 (3.1)
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As mean motion in TLE is expressed in revolution per day, it is first must be converted to mean
revolution per second.

n =
14.76636552

24hours ∗ 3600seconds
= 1.70907 ∗ 10−4rev/second (3.2)

Rearranging the equation, we can obtain for a (semi major axis) in km:

a = 3

√
µ

(2 ∗ π ∗ 1.70907 ∗ 10−4)2 (3.3)

For µ = 396000 km3

s2 , the resulting value is 7002.803km from Earth’s center.
For conversion from mean anomaly to true anomaly, an internet online service is used.

This is due to the amount of algorithm required which can complicate the program. Obtained
from (Juergen Giesen, 2016), the resulting true anomaly is 91.1298deg.

The complete COE value for LAPAN‐A2 based on the TLE data is as follows:

• Semi major axis = 7002.803 km

• Inclination = 5.9950 degrees

• Right Ascension of Ascending Node = 340.4753 degrees

• Argument of Perigee = 269.9108 degrees

• Eccentricity = 0.0013975

• True Anomaly = 91.1298 degrees

All of this calculation were done using Python programming language, with the entire pro‐
gram included in the Appendix.

3.4 Building Math Toolbox ‐ Conversion Between State Vectors and
Orbital Elements

After obtaining COEs, the next step is the ability to convert between state vectors with orbital
elements and back and forth. This capability is required because different parts of the research
requires different orbit definition method, so the ability to change them is essential.

The basis of this conversion regime is based on Vallado’s Fundamental of Astrodynamics
and Application (Vallado and McClain, 2013). The steps are shown below, with the program
code shown in the Appendix.
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3.4.1 From Orbital Elements into State Vectors

For calculation of state vectors, it is more useful to describe an orbit size using semi‐parameter
instead of semi‐major axis. A semi‐parameter is the distance from the primary focus perpen‐
dicular to the orbit. For a circular orbit, the semi‐parameter is simply the radius because the
two of the foci is located at the exact some point, but for elliptical orbit this is not the case.
Thus, it is better to use semi‐parameter to account for this shape. (Vallado andMcClain, 2013)

The equation for semi‐parameter of an elliptical orbit is given by:

p = a ∗ (1 − e2) (3.4)

After obtaining the semi‐parameter, the conversion regime can begin.

1. Initially, all of the orbital elements with angle as measurement have to be converted
from degrees to radians. This is due to NumPy processing which computes in radians.

2. The values are then put into 2 matrices. The first matrix is the position matrix:

r̂PQW =


p cos(v)

1+e cos(v)
p sin(v)

1+e cos(v)

0

 (3.5)

and the second matrix is the velocity matrix:

v̂PQW =


−
√

µ
p sin(v)√

µ
p (e + cos(v)

0

 (3.6)

3. The matrices are then rotated using a transformation matrix to obtain matrices that
correspond to geocentric equatorial coordinate system.

4. Lastly, the matrices are rearranged to fit a typical R and V matrix.

3.4.2 From State Vectors into Orbital Elements

Likewise, a conversion regime from state vectors into orbital elements, also adapted from Val‐
lado’s Fundamental of Astrodynamics and Application (Vallado and McClain, 2013) is as fol‐
lows:

1. All of the state vector are put into twoNumPy array, the position vector into an array, and
likewise for the velocity vector. The magnitude of these two vector are then calculated.
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2. Calculate the angular momentum using the cross product of the vector. Then, find the
magnitude of the resulting vector.

3. Set another vector ’k’ which purpose is to aid in calculation, which contain only ’one’ in
k direction and zero in other direction (i and j).

4. The node vector is calculated. The node vector is the cross product of unit vector ’k’ with
the angular momentum vector. The magnitude of the node vector is also calculated.

5. Eccentricity is then calculated using the vector form of eccentricity, as the initial position
and velocity is known. This vector is given by:

ê =
(v2 − µ

r )r̂ − (r̂ · v̂)v̂
µ

(3.7)

The magnitude of this vector serves as the value of eccentricity for this orbit.

6. The next step is computing semi major axis. To compute semi major axis, specific me‐
chanical energy must first be found:

ξ =
v2

2
− µ

r
(3.8)

After obtaining specificmechanical energy, the size of semi‐major axis can computed by:

a = − µ

2ξ
(3.9)

7. The last step is the calculation of all of the angles: the Right Ascension of Ascending
Node (Ω), Argument of Periapsis (ω), Inclination (i), and True Anomaly (v), which are
given the equation below respectively:

cos(Ω) =
nI

|n̂| IF(nJ < 0) THENΩ = 360deg − Ω (3.10)

cos(ω) =
n̂ · ê

|n̂| · |ê| IF(eK) < 0 THENω = 360deg − ω (3.11)

cos(i) =
hK

|ĥ|
(3.12)

cos(v) =
r̂ · r̂
|ê||r̂| IF(r̂ · v̂ < 0) THENv = 360deg − v (3.13)
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3.5 Building Math Toolbox ‐ Orbit Propagation

The state vectors only describe the position and velocity of a satellite at that instant. Likewise,
the classical orbital elements of an orbit while is helpful in visualization the shape of an orbit,
doesn’t really account for the actual trajectory of the satellite. To know exactly how the satel‐
lite moves through its orbit, the state vectors must be propagated. This propagation is done
by solving for the Two‐body equation given by:

¨̂r = −G(m⊕ + msat)

r2
r̂
r

(3.14)

3.5.1 Orbital Propagation using ODE Solver

The Author solved the two‐body equation using SciPy’s built in ODE‐Solver, called ”solve_ ivp”.
The solve _ ivp function can use various algorithm to solve an ODE, such as Runge‐Kutta Fourth
Order Method, Runge Kutta of Eighth Order, and LSODA, which is an algorithm derived from
an earlier programming language (FORTRAN). Each of this method has their own strength and
weakness depending on the problem. (SciPy Developers, 2020). The Author chose to use
LSODA and ODE45 (Runge‐Kutta Fourth Order) as they are the universal choice.

To use the solver, a function that describes the problem must be made. This essentially
means breaking down the two‐body problem into its elements. The steps are as follows:

1. Find the magnitude of the position vector. The magnitude is given by:

r = 2
√

x2 + y2 + z20 (3.15)

2. Find the derivative of each of the velocity vector element.

ẍ = (− µ

r3 )x (3.16)

ÿ = (− µ

r3 )y (3.17)

z̈ = (− µ

r3 )z (3.18)

3. Arrange the result in a NumPy array, with the position element first (x, y, z), followed by
the acceleration (ẍ, ÿ, z̈). Return the completed array.

4. Include the array in the solver using SciPy’s solve _ ivp function, selecting ’LSODA’ or
ODE45’ ODE solving algorithm.
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3.5.2 Orbital Propagation in Consideration for J2 Perturbation

Recall that when any perturbation is considered, the two‐body equation becomes:

¨̂r = −G(m⊕ + msat)

r2
r̂
r
+ p (3.19)

With p as acceleration due to perturbation. In case of J2 perturbation, the acceleration ac‐
cording to Vallado (Vallado and McClain, 2013) are as follows:

aI = −3J2µR⊕2rI

2r5 (1 − 5rK
2

r2 ) (3.20)

aJ = −3J2µR⊕2rJ

2r5 (1 − 5rK
2

r2 ) (3.21)

aK = −3J2µR⊕2rK

2r5 (3 − 5rK
2

r2 ) (3.22)

with the value of J2 corresponds to the J2 constant:

J2 = 0.00108263

Therefore, the final acceleration value, after accounting for J2 perturbation, becomes:

ẍ = (− µ

r3 )x − 3J2µR⊕2rI

2r5 (1 − 5rK
2

r2 ) (3.23)

ÿ = (− µ

r3 )y − 3J2µR⊕2rJ

2r5 (1 − 5rK
2

r2 ) (3.24)

z̈ = (− µ

r3 )z −
3J2µR⊕2rK

2r5 (3 − 5rK
2

r2 ) (3.25)

The new acceleration value are then placed into an array with the position value first and
the acceleration value later, in x, y, and z order. The array is later returned to the solve _ ivp
function as per previous calculation regime.

3.6 Building Math Toolbox ‐ Orbit Maneuvering

As this research focuses on maneuver from Low Earth Orbit to Geostationary Earth Orbit, var‐
ious orbit maneuver methods will be used. Thus, the algorithms on how to execute them are
outline below. These maneuvers are based upon algorithms found in Vallado’s book. (Vallado
and McClain, 2013).

For these research, all orbit are considered as circular cases.
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3.6.1 Calculation of Orbit Change Using Hohmann Transfer

The step undertaken to calculate the trajectory from one orbit to another orbit, specifically
from LEO, is follows:

1. Declare all the Classical Orbital Elements of the initial Low Earth Orbit.

2. As the orbit is considered circular, the orbit size is measured as radius. Convert the
initial radius of the orbit to canonical (in reference to the Earth) unit. The conversion is
as follows:

rinit =
rsatellite + rEarth

rEarth
(3.26)

Likewise, the intended final orbit is also converted:

r f inal =
r f inal + rEarth

rEarth
(3.27)

3. Calculate the time unit of Earth for use in canonical unit calculation.

TU =
2

√
rEarth

3

G ∗ M
(3.28)

4. Then, find the velocities of the satellite at both the initial point and final point. These
velocities are calculated upon Kepler’s law.

vinit = 2

√
µ

rinit
(3.29)

v f inal = 2

√
µ

r f inal
(3.30)

5. As the transfer orbit between the initial and final orbit is elliptical, find its semi‐major
axis, simply by finding the average between the two:

atrans =
rinit + r f inal

2
(3.31)

6. Calculate the transfer velocities. There are two burns in a Hohmann transfer, one burn in
the initial orbit, and a second burn which took place exactly half the period of the trans‐
fer orbit, circularizing the orbit. The first orbit is called vtransA and vtransB, respectively.
The formula is as follows:

vtransA = 2

√
2µ

rinit
− µ

atrans
(3.32)
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vtransA = 2

√
2µ

r f inal
− µ

atrans
(3.33)

7. Find the ∆v of these two burns.

∆a = |vtransA − vinit| ∗
rEarth

TU
(3.34)

∆b = |v f inal − vtransB| ∗
rEarth

TU
(3.35)

8. Calculate the total time of transfer using the time it took to transverse the transit orbit:

t = π ∗ atrans
3
2 (3.36)

9. Return the resulting ∆a ,∆b, and t value back to the main program.

10. Convert the resulting Classical Orbital Elements into state vectors using previous algo‐
rithm.

11. Propagate the resulting orbit and plot the result using Matplotlib.

3.6.2 Calculation of Orbit Change Using Bi‐elliptic Transfer

As a Bi‐elliptic transfer is essentially two Hohmann transfer in a row, in total there will be three
burns. The steps are as follows:

1. Convert all of the radius of the orbits into canonical units.

rinit =
rsatellite + rEarth

rEarth
(3.37)

rtrans f er =
rtrans f er + rEarth

rEarth
(3.38)

r f inal =
r f inal + rEarth

rEarth
(3.39)

2. Find the Time Unit for use in canonical equations. For Earth, 1 Time Unit equals to
806.80415 seconds.

3. Calculate the velocity at both the initial orbit and final intended orbit.

vinit = 2

√
µ

rinit
(3.40)
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v f inal = 2

√
µ

r f inal
(3.41)

4. Calculate the semi‐major axis of two transfer orbits, as there are two transfer orbit in a
bi‐elliptic transfer:

atrans1 =
rinit + rtrans f er

2
(3.42)

atrans2 =
rtrans f er + r f inal

2
(3.43)

5. Transfer velocities are calculated through:

vtrans1a =
2

√
2µ

rinit
− µ

atrans1
(3.44)

vtrans2c = 2

√
2µ

r f inal
− µ

atrans2
(3.45)

vtrans1b = 2

√
2µ

rtrans f er
− µ

atrans1
(3.46)

vtrans2b = 2

√
2µ

rtrans f er
− µ

atrans2
(3.47)

6. Total ∆V is calculated, first using canonical units:

∆Vcanonical = |vtrans1a − vinit|+ |vtrans2b − vtrans1b|+ |v f inal − vtrans2c| (3.48)

7. Convert the canonical ∆V into m/s

∆V = ∆Vcanonical ∗
rEarth

TU
(3.49)

8. Calculate the timeof flight by calculating the time required to transverse the two transfer
orbits:

t = π ∗ atrans1
3
2 + π ∗ atrans2

3
2 (3.50)

9. Return the value of the required DeltaV to the main program.

10. Convert back the resulting COEs into state vectors, and propagate it using theODE Solver.
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11. Plot the resulting orbit using Matplotlib.

3.6.3 Non‐co‐planar Maneuver ‐ Inclination Change Only

A change of plane in inclination only will require the burn to be conducted at exactly the cross‐
ing between the orbital plane and the equator plane. There will be two points where this
happens: these are referred as nodes.

To calculate the burn, the calculation relies on a simple matter ‐ at the nodes, the true
anomaly of both orbits will be equal, in fact all of the COE are equal, except the inclination of
course. This means the magnitude of velocity before and after burn is also the same. Because
the velocity does not change, the velocity vector create an isosceles triangle with the following
change of velocity:

sin(
∆i
2
) =

∆i

2vinitial cos(ϕ f pa
) (3.51)

Rearranging the equation, we can obtain the ∆v required

∆v = 2vinitial cos(ϕ f pa) sin(
∆i
2
) (3.52)

3.6.4 Non‐co‐planar Maneuver ‐ Right Ascension of Ascending Node Change Only

Another possible change is the change in right ascension of the ascending node. This burn are
done at the intersection between the initial orbit and the final orbit. First, we define a new
angle ϑ which is the angle of the rotation of the velocity. Then, we can find this angle with this
equation:

cos(ϑ) = cos2(iinitial) + sin2(iinitial) cos(∆Ω) (3.53)

Upon obtaining this angle, the ∆v can be calculated through:

∆vΩ = 2vinitial sin(
ϑ

2
) (3.54)

3.6.5 Non‐co‐planar Maneuver ‐ Both Changes

When considering formaneuver that changes both inclination and right ascension of ascending
node, the concept is similar to the change of RAAN.However, the difference is in the calculation
of the angle ϑ. The equation is as follows:

cos(ϑ) = cos(iinitial) cos(i f inal) + sin(iinitial) sin(i f inal) cos(∆Ω) (3.55)
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And the ∆v is obtained by:
∆vΩ = 2vinitial sin(

ϑ

2
) (3.56)

3.7 Building Math Toolbox ‐ Lambert’s Problem Solver

For this research, the Lambert Solver Algorithm that is going to be used is based upon Izzo’s
paper. (Izzo, 2015). This algorithm is used due to its simplicity and its fitness for this particular
problem, which is a single revolution transfer orbit. An implementation of Izzo’s algorithm is
used by the European Space Agency (Izzo, 2019) and also Poliastro, an open‐source astrody‐
namics library for Python. (Juan Luis Cano Rodríguez, 2019).

The Lambert Solver requires two algorithm towork. The first algorithm is themain Lambert
solver code (with P1, P2, µ and t as input, while the second algorithm is the iterator that is
used in the first algorithm.

The steps to implement the first algorithm is as follows:

1. Obtain the 2 position vector(r⃗1, r⃗2), the time of flight between them, and the gravita‐
tional parameter. The time of flight and the gravitational parameter must be larger than
zero. These 4 variables serve as input to the solver.

2. Find the vector c⃗ which is the chord between the two points, and find the magnitude of
the all the vectors.

c⃗ = r⃗2 − r⃗1 (3.57)

c = |⃗c|, r1 = |r⃗1|, r2 = |r⃗2| (3.58)

3. Calculate the semiparameter

s =
1
2
(r1 + r2 + c) (3.59)

4.
îr,1 = r⃗1/r1, îr,2 = r⃗2/r2 (3.60)

îh = îr,1 × îr,2 (3.61)

5. Find λ parameter
λ =

√
1 − c/2 (3.62)

6. Begin switch case

if (r11r22 − r12r21) < 0 then
λ = −λ (3.63)
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ît,1 = îr,1 × îh, ît,2 = îr,2 × îr,2 (3.64)

else
ît,1 = îh × îr,1, ît,2 = îh × îh (3.65)

end if

T =

√
2µ

s3 t (3.66)

7. Enters the iteration regime. The ”findxy” function below is name of the second algo‐
rithm’s function. The xlist and ylist are arrays.

xlist, ylist = f indxy(λ, T) (3.67)

γ =
µs
2

, ρ =
r1 − r2

c
, σ =

√
(1 − ρ2) (3.68)

for each x, y in xlist, ylist do

Vr,1 = γ[(λy − x)− ρ(λy + x)]/r1 (3.69)

Vr,2 = −γ[(λy − x)− ρ(λy + x)]/r2 (3.70)

Vt,1 = γσ(y + λx)/r1 (3.71)

Vt,2 = γσ(y + λx)/r2 (3.72)

v⃗1 = Vr,1 îr,1 + Vt,1 ît,1 (3.73)

v⃗2 = Vr,2 îr,2 + Vt,2 ît,2 (3.74)

end for, end of the iteration regime

The following is the f indxy algorithm, which through iteration shall calculate all the x and
y. The x and y in this definition are angles, not coordinate, defined more clearly in the paper
(The Lambert problem is still a geometrical problem). The process according to Izzo (Izzo, 2015)
is as follows:

1. Ensure that the parameter |λ| is smaller than zero, and T is smaller than zero.

2. Define M, the number of revolutions of orbit in which the transfer happen.

Mmax = f loor(T/π) (3.75)
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3. Find T00, where T0 is the value of T when x = 0 and T00 meaning T0 for single revolution

T00 = arccos λ + λ
√

1 − λ2 (3.76)

4. Begin switch case, accounting for different orbit sizes and also the limit of number of
revolutions for the trajectory

if T < T00 + Mmaxπ and Mmax > 0 then

begin the Halley iteration, from x = 0, T = 0 and find Tmin(Mmax)

if Tmin > T then
Mmax = Mmax − 1 (3.77)

end if

end if

5. Obtain the value of T when T(x = 1)

T(x = 1) = T1 =
2
3
(1 − λ3) (3.78)

6. Compute value of x0, which equation depends of various case of T

7. After obtaining the value of x0, begin the Householder iteration from there and find
values of x and y.

8. Begin iteration

whileMmax > 0 do

calculate x0l and x0r with M = Mmax

begin Householder iteration from x0l and find xr, yr

begin Householder iteration from x0r and find xl , yl

M = Mmax

end while

The program to implement these algorithm in a scientific computing environment is based
upon Poliastro Python Library.
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3.8 Mission Design ‐ Selection of Suitable Launch Vehicle and Launch
Site

The author needs to select a suitable launch vehicle for the mission, and as a consequence,
the launch site available for the corresponding launch vehicle. For this research, the individual
launch performance or capability is not the primary selection criteria, but rather the availability
of launch vehicle’s specification is the ultimate factor, as the performance data is immensely
needed.

Based upon the specification included in the Launch Vehicle’s UserManual, the initial park‐
ing orbit that is located at LEO can be determined. This is the starting point for design of the
orbit transfer to Geostationary Earth Orbit. The final orbit is a circular Geostationary Orbit, in
which its exact latitude and longitude is not in the scope of this research.

Once the satellite it is its initial Low Earth Orbit, there are various scenarios to achieve
Geostationary EarthOrbit. These scenarios are then compared to seewhich one has the lowest
fuel cost.

3.9 Mission Design ‐ Scenario One

The outline of the first scenario is as follows:

1. From Low Earth Orbit, the orbit is enlarged to Geosynchronous Earth orbit via 2 possible
methods: Hohmann and Bi‐elliptic.

2. Then, using non‐co‐planar maneuver, the GSO orbit is shifted to the equator to form a
Geostationary Earth Orbit

3.9.1 Calculation of Maneuver from Initial Orbit (LEO) to GSO via Hohmann and
Bi‐Elliptic

Based upon the Launch Vehicle documentation, the final orbit will be exactly a circular orbit
at an altitude of 35 786 km at the same plane of the the initial Low Earth (Parking) Orbit.

Using algorithm based upon Vallado (Vallado and McClain, 2013), this circular to circular,
coplanar orbit transfer is calculated, from the parking orbit altitude to geosynchronous orbit
altitude.

The first method is using Hohmann transfer. This simply follows the original formulation,
and the final ∆v cost can be immediately known.

The secondmethod is using Bi‐elliptic transfer, with a transfer orbit higher than the desired
final orbit (35 768 km). This method will also utilize the algorithm in Vallado’s book. As the
altitude of the transfer orbit can be varied, the Author has chosen the following transfer orbit:
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• 35 800 km. This altitude represent the starting point, with just a little bit higher than
the target orbit of 35 768 km, accounting for launch vehicle insertion accuracy.

• 40 768 km. 5000 km above Geosynchronous Earth Orbit.

• 45 768 km. 10000 km above Geosynchronous Earth Orbit.

• 55 768 km. 20000 km above Geosynchronous Earth Orbit.

3.9.2 Calculation of Maneuver from GSO to GEO via Non‐Co‐Planar Maneuver

Upon arrival to a Geosynchronous Earth orbit, the amount of ∆v required to change the orbital
plane to equator is calculated using the earlier algorithm.

3.10 Mission Design ‐ Scenario Two

The outline of the first scenario is as follows:

1. From Low Earth Orbit, the non‐co‐planar maneuver is immediately done to shift the
orbit to equatorial plane.

2. Then, using either Hohmaan Transfer or Bi‐elliptical transfer, the orbit is enlarged to a
circular orbit at an altitude of 35 768 km ‐ the Geostationary Earth Orbit.

3.10.1 Calculation from Inclined Plane to Equatorial Plane

Regardless of the inclination of the initial parking plane, the plane is shifted using non‐co‐
planar maneuver burn to shift it to the equatorial plane (inclination angle of zero).

3.10.2 Calculation of Orbit Enlargement using Hohmann and Bi‐elliptic Transfer

Once the satellite is in the orbital plane, the orbit is enlarged using both the Hohmann and
Bi‐elliptic transfer. The transfer orbit for the Bi‐elliptic method is the same altitude with the
previous scenario.

• 35 800 km. The starting point for bi‐elliptic calculation.

• 40 768 km. 5000 km above Geostationary Earth Orbit.

• 45 768 km. 10000 km above Geostationary Earth Orbit.

• 55 768 km. 20000 km above Geostationary Earth Orbit.
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3.11 Mission Design ‐ Scenario Three (via Lambert Solver)

The thirdmethod in this research is using the Lambert Solver based upon Izzo’s (Izzo, 2015) pa‐
per, as shown earlier in the chapter. As the Lambert Solver can yield various results depending
on the constraints, the constrains for this research’s Lambert solver is as follows:

1. The number of revolutions for the Lambert Solver is strictly within one revolution of the
orbit.

2. The starting point P1 is exactly the same as the starting point for other methods, and
P2 is exactly differentiated by the difference of altitude of P1 and P2.

3. The time of flight between the two point is differentiated as follows: 0.1x, 0.5x, 1x, 1.5x,
and 2x the time of flight using Hohmann transfer method.

3.12 Mission Analysis ‐ Total Delta V Comparison

Based upon all the scenarios and their sub‐cases, the total ∆v for each case are calculated.
They are first compared to each other for each scenario. Then, the best case from each sce‐
nario is compared again, to compare which scenario works best.

3.12.1 Propagation of Orbit With and Without J2 Perturbation

The maneuver are then all propagated using the earlier orbit propagator. For each case, the
calculation is done twice, one accounting for J2 Perturbation, and one without. The propaga‐
tion is then visualized using Matplotlib plotter

3.13 Mission Analysis ‐ Possible Payload Calculation

Finally, using the transfer orbit case with the lowest propellant cost, the payload can that be
brought to GEOwith that particular launch vehicle can be calculated using the rocket equation:

∆V = Ispg0ln
m0

m f
(3.79)

where the value of Isp can be obtained from the launch vehicle’s specification.
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CHAPTER 4

RESULTS AND DISCUSSION

4.1 Mathematical Tools Confirmation

To ensure consistency of the mathematical tools (programs) of this research, the functions
used to solve the problem must first be checked. The result of function checking is shown
below.

4.1.1 Checking of the Conversion Regime

As the ability to convert from state vectors to classical orbital elements and vice‐versa is crucial,
the Author needs to verify whether the algorithm is satisfactory. To do so, the author obtained
LAPAN‐A2’s TLE, convert it into COE, convert it into state vectors, and then convert it back into
COE. The result of the initial COE and the final COE is then compared to see whether it differs
or not.

From LAPAN A2 TLE, the classical orbital elements is as follows:

• Semi‐major Axis: 7018.095459732759 km

• Inclination: 5.9950 deg

• Eccentricity: 0.0013975

• Right Ascension of the Ascending Node: 340.4753 deg

• Argument of Perigee: 268.9107 deg

• True Anomaly: 91.1298 deg

• Semi‐parameter: 7018.081753348462 km

With the code, the resulting state vectors is as follows:

rx = [6655.98110129] ry = [-2225.7413041] rz = [13.31194546]
vx = [2.38547486] vy = [7.10516067] vz = [0.78697455]
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The state vectors are then reverted back to classical orbital elements and the end result is:

Semimajor = 7018.095459732762 km
Inclination = 5.994999999999943 deg
Eccentricity = 0.001397499999999939
RAAN = 340.47529999999995 deg
AOG = 269.91080000001494 deg
True Anomaly = 91.12979999998507 deg

As evident, the conversion algorithm has successfully convert an orbit description, from
TLE, to COE, to RV, and back to COE again, all within accuracy.

4.1.2 Propagation of LAPAN A2 Orbit With and Without J2

To check the code of orbit propagator, the Author once again uses the LAPAN A2 satellite as an
example orbit. Initial orbit data were determined based upon Celestrak’s database for LAPAN
A2 as of June 16th, 2020. The result of the propagator code and visualized using matplotlib is
as follows:
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The result of the orbit propagator is consistent with the literature (Vallado and McClain,
2013) (Curtis, 2014) denoting that J2 perturbation affects an orbits Right Ascension of Ascend‐
ing Node and Argument of Perigee. Therefore, the propagator successfully accounts for J2
perturbation.

4.2 Mission Design ‐ Launch Vehicle

4.2.1 Introduction to Epsilon Rocket

In order to conduct this research, the Author needs to select a suitable launch vehicle so its
initial Low Earth Orbit can be determined. The following launch vehicles are ones which are
considered as small launch vehicle ‐ a type of vehicle that fits within limited budget. The main
factor in selecting a launch vehicle is the amount of data regarding its specification that can be
publicly accessed. For this research, the Author has chosen the Epsilon Launch Vehicle from
Japan Aerospace Exploration Agency. The data regarding this rocket is publicly available and
detailed.

The Epsilon Launch Vehicle (Epsilon LV) is one of Japan Aerospace Exploration Agency
(JAXA)’s flagship launch vehicle. Its primary focus is to launch small satellites, with the ini‐
tial goal of providing Japan with small scientific mission capability without relying on outside
sources. The Epsilon LV is also being pushed as a commercial alternative. (Agency, 2018)

Epsilon LV is a solid‐propellant rocket which is built upon JAXA’s proven technologies, such
as a former M‐V rocket (another solid‐fuel rocket) and JAXA’s primary launch vehicle, the H‐II.
In fact, Epsilon is a combination of proven M‐V and H‐II LV parts, with the first stage coming
from a H‐IIA booster, and the second and the third stage coming from the M‐V LV. So far, this
has been proven ‐ the Epsilon LV is a very reliable rocket with 100 % success rate as of 2020.
(Agency, 2018)

Another goal of the Epsilon program is to reduce launch cost and reduce deployment time.
The Epsilon LV costs only a third of itsM‐V predecessor, and boast an incredible 7 day time from
the installation of the first stage to post‐launch processing, compared to 42 days ofM‐V LV and
40 days of Pegasus LV (USA). The Epsilon LV is also available for both single ride or multi‐ride
(ride‐sharing) configuration, which enable customers wider usage capability. (Epsilon Launch
Vehicle)

Operation of the Epsilon LV is conducted on Uchinoura Space Center, located in Kagoshima
Prefecture, Japan. The Uchinoura Space Center is one of Japan’s primary spaceport, focusing
on the Epsilon rocket and sounding rocket launches. Another primary space port within Japan
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FIGURE 4.7: Diagram of Epsilon Launch Vehicle.) Image credit: Agency, 2018

being Tanegashima Space Center, which is currently reserved for heavy launch vehicle. Uchi‐
noura Space Center has a historic and proven lineage of launching rockets, providing a com‐
plete launch service of its customers. The coordinate for Epsilon Launch Pad is 31°15’03.5”N
131°04’56.7”E.

FIGURE 4.8: Uchinoura Space Center, the Launch Site for Epsilon Launch Vehi‐
cle. Image credit: Agency, 2018
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FIGURE 4.9: Launch of Epsilon Launch Vehicle from Uchinoura Space Center.
Image credit: Uchinoura Space Center

For this research, the Epsilon launch vehicle was selected to be the baseline for the pos‐
sible mission due to information availability is much superior compared to other rocket on its
class. This is useful in regard tomission planning, which requires specific and accurate payload
capability according to various mission profiles.

4.2.2 Epsilon Rocket Specification

For this research, the mission is assumed to be a single‐ride (the new satellite as the primary
and only payload). The specification of the LV is as follows:
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FIGURE 4.10: Specification of Epsilon Launch Vehicle. Image credit: Agency,
2018

FIGURE 4.11: Accuracy of the Epsilon Launch Vehicle. Image credit: Agency,
2018
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4.3 Initial and Final Orbit Definition

4.3.1 Initial LEO (Parking Orbit) Definition

Based upon the specification of the Epsilon Launch Vehicle above, the configuration with PBS
(Post‐Boost Stage) for LEO is located at 500 km circular orbit at inclination of 30.5 deg. The
launch vehicle have an accuracy of ±10 km in both apogee and perigee and ±0.1deg for the
orbital inclination. Therefore the initial Low Earth Orbit is defined as follows:

• Semi‐major Axis: 6 878.1 km

• Inclination: 30.5 deg

• Eccentricity: 0

• Right Ascension of the Ascending Node: 0 deg

• Argument of Perigee: 0 deg

• True Anomaly: 0 deg

4.3.2 Final Geostationary Orbit Definition

The final target orbit in Geosynchronous orbit is in the same plane with the original LEO orbit.
Therefore the difference is in it’s semi major axis (or radius, as this is a circular orbit).

• Semi‐major Axis: 42 164.1 km

• Inclination: 0 deg

• Eccentricity: 0

• Right Ascension of the Ascending Node: 0 deg

• Argument of Perigee: 0 deg

• True Anomaly: 0 deg
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4.4 Scenario One Result

4.5 Scenario Two Result

4.6 Scenario Three (Lambert Solver) Result

4.7 Comparison of Each Scenario

4.8 Payload Calculation

4.9 Final Discussion
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CHAPTER 5

CONCLUSIONS AND FUTURE WORKS

5.1 Conclusion

• cool

• cooler

• coolest

5.2 Future Work
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Appendix A: Python Code

1 import numpy as np
2 from scipy.integrate import solve_ivp
3 import matplotlib.pyplot as plt
4

5 def rv2coe(rx,ry,rz,vx,vy,vz):
6 """this function converts from RV to orbital elements"""
7 #this is the messy part where the computer actually computes
8 #turning the inputed data into NumPy array
9 RIJK = np.array([rx, ry, rz])

10 VIJK = np.array([vx, vy, vz])
11

12 Rmag = np.linalg.norm(RIJK)
13 Vmag = np.linalg.norm(VIJK)
14

15 # calculting angular momentum
16 h= np.cross(RIJK,VIJK)
17 hmag = np.linalg.norm (h)
18

19 #set unit vector K for usage in calculation
20 kunit = np.array ([0,0,1])
21 # calculating node vector and its magnitude
22 n = np.cross(kunit,h)
23 nmag = np.linalg.norm(n)
24

25 #Calculation of eccentricity
26 #start by defining mu, and separating the equation into brackets to

reduce complexity
27 mu = 398600
28 bracket1 = (Vmag**2 - (mu/Rmag))
29 bracket2 = np.dot(RIJK,VIJK)
30 bracket3 =(1/mu)
31 #calculation of vector quantity of eccentricity and its magnitude
32 evector = bracket3*((bracket1*RIJK)-(bracket2*VIJK))
33 emag = np.linalg.norm(evector)
34

35

36 #determination of orbit shape
37 if emag < 1:
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38 shape = "not parabolic"
39 else:
40 shape = "parabolic"
41

42 #Calculation of specific mechanical energy
43 sme = ((Vmag**2/2) - (mu/Rmag))
44

45 #Calculation of semi major axis
46 semimajor = -mu/(2*sme)
47

48 #Calculation of semiparameter
49 p = (hmag**2)/mu
50

51 #Calculation of angles
52 #inclination angle
53 cosi = (h[2])/hmag
54 i = np.arccos(cosi)*(180/np.pi)
55

56 #ascending node
57 cosomega = n[0]/nmag
58 omega = np.arccos(cosomega)*(180/np.pi)
59 if n[2]<1:
60 checkedomega = 360 - omega
61 else:
62 checkedomega = omega
63

64 #argument of perigee
65 cosArPeri = (np.dot(n,evector)/(nmag*emag))
66 ArPeri = np.arccos (cosArPeri)*(180/np.pi)
67 if evector[2] < 0:
68 checkedArPeri = 360 -ArPeri
69 else:
70 checkedArPeri = ArPeri
71

72 #true anomaly
73 cosv = (np.dot(evector,RIJK))/(emag*Rmag)
74 v = np.arccos(cosv)*(180/np.pi)
75 if np.dot(RIJK,VIJK) < 0:
76 checkedv = 360 - v
77 else:
78 checkedv = v
79

80 #special cases angle
81 cosArPeriTrue = evector[0]/emag
82 ArPeriTrue = np.arccos(cosArPeriTrue)*(180/np.pi)
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83 if evector[1]<0:
84 checkedArPeriTrue = 360 - ArPeriTrue
85 else:
86 checkedArPeriTrue = ArPeriTrue
87 tilde = checkedomega+checkedArPeri
88

89 #argument of latitude
90 cosu = (np.dot(n,RIJK))/(nmag*Rmag)
91 u = np.arccos(cosu)*(180/np.pi)
92 if RIJK[2]<0:
93 checkedU = 360-u
94 else:
95 checkedU = u
96

97 #true longitude
98 coslambda = RIJK[0]/Rmag
99 lambdacoef = np.arccos(coslambda)*(180/np.pi)

100 if RIJK[1]<0:
101 checkedLambda = 360-lambdacoef
102 else:
103 checkedLambda = lambdacoef
104

105 #return the result of the function
106 return semimajor , i, emag, checkedomega , checkedArPeri , checkedv
107

108

109

110 def COE2RV(p,e,i,longitudeomega ,argumentomega ,v):
111 """this function converts from orbital elements to RV"""
112 #convert from degrees to radians
113 longitudeomegarad = longitudeomega/(180/np.pi)
114 argumentomegarad = argumentomega/(180/np.pi)
115 vrad = v/(180/np.pi)
116 irad = i/(180/np.pi)
117

118 #calculate the elements for matrices of R and V
119

120 mu = 398600
121

122 r1upper = p*np.cos(vrad)
123 r1lower = 1+(e*np.cos(vrad))
124 r1 = (r1upper/r1lower)
125 r2 =((p*np.sin(vrad))/(1+(e*np.cos(vrad))))
126 r3 = 0
127
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128 v1 = -(np.sqrt(mu/p))*np.sin(vrad)
129 v2 = (np.sqrt(mu/p))*(e+np.cos(vrad))
130 v3 = 0
131

132 #creating the transformation matrix
133 #elements are numbered from top left, go right, until bottom right
134 t11 =(np.cos(longitudeomegarad)*np.cos(argumentomegarad))-(np.sin(

longitudeomegarad)*np.sin(argumentomegarad)*np.cos(irad))
135 t12 =(-np.cos(longitudeomegarad)*np.sin(argumentomegarad))-((np.sin(

longitudeomegarad))*np.cos(argumentomegarad)*np.cos(irad))
136 t13 =(np.sin(longitudeomegarad)*np.sin(irad))
137 t21 =(np.sin(longitudeomegarad)*np.cos(argumentomegarad))+(np.cos(

longitudeomegarad)*np.sin(argumentomegarad)*np.cos(irad))
138 t22 =(-np.sin(longitudeomegarad)*np.sin(argumentomegarad))+(np.cos(

longitudeomegarad)*np.cos(argumentomegarad)*np.cos(irad))
139 t23 =(-np.cos(longitudeomegarad)*np.sin(irad))
140 t31 =np.sin(argumentomegarad)*np.sin(irad)
141 t32 =np.cos(argumentomegarad)*np.sin(irad)
142 t33 =np.cos(irad)
143

144 transform = np.array([[t11,t12,t13],[t21,t22,t23],[t31,t32,t33]])
145

146 #creating the R and V matrix
147 matrixR = np.array([[r1],[r2],[r3]])
148 matrixV = np.array([[v1],[v2],[v3]])
149

150 #transforming the R and V matrix
151 finalr = np.dot(transform , matrixR)
152 finalv = np.dot(transform , matrixV)
153

154 #return the results
155 return finalr, finalv
156

157 def gradienttwobody(t, ybar):
158 """
159 IVP solver for orbit propagator
160 Keyword Arguments:
161 t -- time
162 ybar -- array of initial values
163 """
164 mu = 398600.4
165 x = (ybar[0])
166 y = (ybar[1])
167 z = (ybar[2])
168 sqrtr = ((x**2)+(y**2)+(z**2))

74\80



PRELIMINARY ORBIT TRANSFER DESIGN FROM LOW EARTH ORBIT TO GEOSTATIONARY EARTH
ORBIT

169 r = np.sqrt(sqrtr)
170

171 x1 = ybar[3]
172 x2 = ybar[4]
173 x3 = ybar[5]
174 x1dot = (-(mu)/(r**3))*x
175 x2dot = (-(mu)/(r**3))*y
176 x3dot = (-(mu)/(r**3))*z
177

178 ybar_dot = np.array([x1,x2,x3,x1dot,x2dot,x3dot])
179

180 return ybar_dot
181

182 def hohmannCircular(initialKm , finalKm):
183 """
184 Hohmann transfer calculator for circular orbits
185 Keyword arguments:
186 initialKm -- initial orbit altitude in Km
187 finalKm -- final desired after burn altitude in km
188 """
189 # Variable declaration
190 EarthRadius = 6378.137 # in km
191 mu = 1
192 TU = 806.80415 # in seconds
193

194 # Convert from km into canonical units
195 rInitial = ((initialKm + EarthRadius)/EarthRadius)
196 rFinal = ((finalKm + EarthRadius)/EarthRadius)
197

198 # Finding initial velocity at points in the transfer
199 vInitial = np.sqrt((mu/rInitial))
200 vFinal = np.sqrt((mu/rFinal))
201

202 # Transfer Orbit semi-major axis
203 aTrans = ((rInitial+rFinal)/2)
204

205 # Finding transfer velocities
206 vTransA = np.sqrt( ((2*mu)/rInitial) -(mu/aTrans) )
207 vTransB = np.sqrt( ((2*mu)/rFinal) -(mu/aTrans) )
208

209 # Final deltaV
210 deltaVCanonical = np.abs(vTransA - vInitial) + np.abs(vFinal - vTransB)
211 deltaVTotal = deltaVCanonical*(EarthRadius/TU)
212

213 # Finding Time of Flight
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214 timeOfFlight = np.pi* (aTrans**(3/2))
215

216 return deltaVTotal , timeOfFlight
217

218 def BiEllipticCircular (initialKm , transferKm , finalKm):
219 """
220 BiElliptical tranfer calculator for circular orbits
221 Keyword arguments:
222 initialKm -- initial orbit altitude in km
223 transferKm -- altitude of transfer point, must be bigger than final

altitude , in Km
224 finalKm -- final desired after burn altitude in km
225 """
226 # Variable declaration
227 EarthRadius = 6378.137 # in km
228 mu = 1
229 TU = 806.80415 # in seconds
230

231 # Convert from km into canonical units
232 rInitial = ((initialKm + EarthRadius)/EarthRadius)
233 rTransfer = ((transferKm + EarthRadius)/EarthRadius)
234 rFinal = ((finalKm + EarthRadius)/EarthRadius)
235

236 # Finding initial velocity at points in the transfer
237 vInitial = np.sqrt((mu/rInitial))
238 vFinal = np.sqrt((mu/rFinal))
239

240 # Transfer Orbit semi-major axis
241 aTrans1 = (rInitial+rTransfer)/2
242 aTrans2 = (rTransfer+rFinal)/2
243

244 # Finding transfer velocities
245 vTrans1a = np.sqrt( ((2*mu)/rInitial) - (mu/aTrans1) )
246 vTrans2c = np.sqrt( ((2*mu)/rFinal) - (mu/aTrans2) )
247 vTrans1b = np.sqrt( ((2*mu)/rTransfer) - (mu/aTrans1) )
248 vTrans2b = np.sqrt( ((2*mu)/rTransfer) - (mu/aTrans2) )
249

250 # Final deltaV
251 deltaVCanonical = np.abs(vTrans1a - vInitial) + np.abs(vTrans2b -

vTrans1b ) + np.abs(vFinal-vTrans2c)
252 deltaVTotal = deltaVCanonical*(EarthRadius/TU)
253

254 # Finding Time of Flight
255 timeOfFlight = np.pi* (aTrans1**(3/2)) + np.pi * (aTrans2**(3/2))
256 return deltaVTotal , timeOfFlight
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257

258 def rv2coeCircular (rx,ry,rz,vx,vy,vz):
259 """
260 RV2COE function for circular orbits
261 """
262 #this is the messy part where the computer actually computes
263 #turning the inputed data into NumPy array
264 RIJK = np.array([rx, ry, rz])
265 VIJK = np.array([vx, vy, vz])
266

267 Rmag = np.linalg.norm(RIJK)
268 Vmag = np.linalg.norm(VIJK)
269

270 # calculting angular momentum
271 h= np.cross(RIJK,VIJK)
272 hmag = np.linalg.norm (h)
273

274 #set unit vector K for usage in calculation
275 kunit = np.array ([0,0,1])
276 # calculating node vector and its magnitude
277 n = np.cross(kunit,h)
278 nmag = np.linalg.norm(n)
279

280 #Calculation of eccentricity
281 #start by defining mu, and separating the equation into brackets to

reduce complexity
282 mu = 398600
283 bracket1 = (Vmag**2 - (mu/Rmag))
284 bracket2 = np.dot(RIJK,VIJK)
285 bracket3 =(1/mu)
286 #calculation of vector quantity of eccentricity and its magnitude
287 evector = bracket3*((bracket1*RIJK)-(bracket2*VIJK))
288 emag = np.linalg.norm(evector)
289

290

291 #determination of orbit shape
292 if emag < 1:
293 shape = "not parabolic"
294 else:
295 shape = "parabolic"
296

297 #Calculation of specific mechanical energy
298 sme = ((Vmag**2/2) - (mu/Rmag))
299

300 #Calculation of semi major axis
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301 semimajor = -mu/(2*sme)
302

303 #Calculation of semiparameter
304 p = (hmag**2)/mu
305

306 #Calculation of angles
307 #inclination angle
308 cosi = (h[2])/hmag
309 i = np.arccos(cosi)*(180/np.pi)
310

311 #ascending node
312 cosomega = n[0]/nmag
313 omega = np.arccos(cosomega)*(180/np.pi)
314 if n[2]<1:
315 checkedomega = 360 - omega
316 else:
317 checkedomega = omega
318

319 #argument of perigee
320 cosArPeri = (np.dot(n,evector)/(nmag*emag))
321 ArPeri = np.arccos (cosArPeri)*(180/np.pi)
322 if evector[2] < 0:
323 checkedArPeri = 360 -ArPeri
324 else:
325 checkedArPeri = ArPeri
326

327 #true anomaly
328 cosv = (np.dot(evector,RIJK))/(emag*Rmag)
329 v = np.arccos(cosv)*(180/np.pi)
330 if np.dot(RIJK,VIJK) < 0:
331 checkedv = 360 - v
332 else:
333 checkedv = v
334

335 #special cases angle
336 cosArPeriTrue = evector[0]/emag
337 ArPeriTrue = np.arccos(cosArPeriTrue)*(180/np.pi)
338 if evector[1]<0:
339 checkedArPeriTrue = 360 - ArPeriTrue
340 else:
341 checkedArPeriTrue = ArPeriTrue
342 tilde = checkedomega+checkedArPeri
343

344 #argument of latitude
345 cosu = (np.dot(n,RIJK))/(nmag*Rmag)
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346 u = np.arccos(cosu)*(180/np.pi)
347 if RIJK[2]<0:
348 checkedU = 360-u
349 else:
350 checkedU = u
351

352 #true longitude
353 coslambda = RIJK[0]/Rmag
354 lambdacoef = np.arccos(coslambda)*(180/np.pi)
355 if RIJK[1]<0:
356 checkedLambda = 360-lambdacoef
357 else:
358 checkedLambda = lambdacoef
359

360 #return the result of the function
361 return semimajor , i, emag, checkedomega , checkedArPeri , checkedLambda
362

363 def hohmannCircularDetailed(initialKm , finalKm):
364 """
365 Hohmann transfer calculator for circular orbits
366 Shows results in deltaV a, deltaV b, time of flight
367 Keyword arguments:
368 initialKm -- initial orbit altitude in Km
369 finalKm -- final desired after burn altitude in km
370 """
371 # Variable declaration
372 EarthRadius = 6378.137 # in km
373 mu = 1
374 TU = 806.80415 # in seconds
375

376 # Convert from km into canonical units
377 rInitial = ((initialKm + EarthRadius)/EarthRadius)
378 rFinal = ((finalKm + EarthRadius)/EarthRadius)
379

380 # Finding initial velocity at points in the transfer
381 vInitial = np.sqrt((mu/rInitial))
382 vFinal = np.sqrt((mu/rFinal))
383

384 # Transfer Orbit semi-major axis
385 aTrans = ((rInitial+rFinal)/2)
386

387 # Finding transfer velocities
388 vTransA = np.sqrt( ((2*mu)/rInitial) -(mu/aTrans) )
389 vTransB = np.sqrt( ((2*mu)/rFinal) -(mu/aTrans) )
390
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391 # Final deltaV
392 deltaVA = (np.abs(vTransA - vInitial))*(EarthRadius/TU)
393 deltaVB = (np.abs(vFinal - vTransB))*(EarthRadius/TU)
394

395 # Finding Time of Flight
396 timeOfFlight = np.pi* (aTrans**(3/2))
397

398 return deltaVA, deltaVB, timeOfFlight
399

400 def gradienttwobody_J2(t, ybar):
401 """
402 IVP solver for orbit propagator , taking into account J2
403 Keyword Arguments:
404 t -- time
405 ybar -- array of initial values
406 """
407

408 mu = 398600.4 # for Earth
409 j2_const = 0.00108262668
410 er = 6371 # Earth radius in km
411

412 x = (ybar[0])
413 y = (ybar[1])
414 z = (ybar[2])
415 sqrtr = ((x**2)+(y**2)+(z**2))
416 r = np.sqrt(sqrtr)
417

418 x1 = ybar[3]
419 x2 = ybar[4]
420 x3 = ybar[5]
421

422 const = ((3*j2_const*mu*(er**2))/(2*(r**5)))
423 ai = -const*x*(1 - (5*(z**2))/(r**2))
424 aj = -const*y*(1 - (5*(z**2))/(r**2))
425 ak = -const*z*(3 - (5*(z**2))/(r**2))
426 x1dot = (-(mu)/(r**3))*x + ai
427 x2dot = (-(mu)/(r**3))*y + aj
428 x3dot = (-(mu)/(r**3))*z + ak
429

430 ybar_dot = np.array([x1,x2,x3,x1dot,x2dot,x3dot])
431

432 return ybar_dot
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