
INTERNATIONAL UNIVERSITY LIAISON INDONESIA

Study of Air-Traffic Volume Based on ADS-B Data

Presented to the Faculty of

Engineering

In Partial Fulfilment

Of the Requirements for the Degree

Bachelor of Sciences

In

Aviation Engineering

By

I GEDE Suryadharma Susila

January 19, 2020

http://www.iuli.ac.id

i

“If the facts do not fit the theory, change the facts.”

Albert Einstein

ii

INTERNATIONAL UNIVERSITY LIAISON INDONESIA

Abstract

Faculty of Engineering

Department of Aviation Engineering

Bachelor of Engineering

Study of Air-Traffic Volume Based on ADS-B Data

by I GEDE Suryadharma Susila

The purpose of Air-Traffic Density is to identify the traffic flow and visualized

the behavior, because air traffic is foreseen to be double by 2030. The objective of

this study is to collect the ADS-B messages using the low-cost receiver system and

used the ADS-B data to visualize and determine the air-traffic volume. To sustain

and further improve safety standard, modern visualizations and analysis tools have

to be created. To do so, the approach is going to be using the Automatic Dependent

Surveillance-Broadcast or known as ADS-B. ADS-B is an alternative way of supply-

ing position data to aircraft where aircraft continuously transmit information about

their identification and position. Such signals can be received with the ADS-B re-

ceiver. In this research, the low-cost ADS-B receiver is acquired from the OpenSky

Network. The ADS-B message that was collected by using a stream parser is going

to be filtered through categorizing the altitude into 6 categories. Each category was

named by their flight level, FL1 is categorize for the flight level from 0 to 1000 feet,

FL2 starts from 1001 to 2000 feet, FL3 starts from 2001 to 3000 feet, FL4 starts from

3001 to 4000 feet, FL5 starts from 4001 to 5000 feet, and the last group starts from

5001 feet and above. Not only the altitude that was filtered but also the latitude

and longitude also grouped by their flight level. By way of illustration, the filtering

process was held by using Python as the programming language. In conclusion, the

ADS-B data was able to be collected using the low-cost ADS-B receiver system. From

the collected data, the air traffic can be visualized and determined from the message

that have been gathered using the receiver system as it is. After the air traffic is vi-

sualized, the average number of aircraft in Flight Level and the standard deviation

can be determined. The highest average and the standard deviation is at FL6 and

the lowest average is at FL5.

Keyword: Automatic Dependent Surveillance-Broadcast (ADS-B); Air-Traffic Volume

HTTP://WWW.IULI.AC.ID
http://faculty.university.com
https://www.iuli.ac.id/programs/engineering/aviation-engineering-avionics/

iii

Statement by The Author

I hereby declare that this submission is my own work and to the best of my

knowledge, it contains no material previously published or written by another per-

son, nor material which to a substantial extent has been accepted for the award of

any other degree or diploma at any educational institution, except where due ac-

knowledgment is made in the thesis.

I Gede Suryadharma Susila

Student Date

iv

Committee Approval

Study of Air-Traffic Volume Based on ADS-B Data

I GEDE Suryadharma Susila

January 19, 2020

Faculty of Engineering

Triwanto Simanjuntak, Ph.D

Advisor, Department of Aviation Engineering Date

Dr. Ir. Prianggada Indra Tanaya, M.M.E.

Dean of Engineering Date

v

Acknowledgements

Thank you God Almighty for the strength, knowledge, ability and opportunity to

undertake and complete this research study. Without his presence, this wonderful

achievement would not be possible.

Throughout the writing process of this thesis report I have received a great amount

of supports and assistances. I would like to thank my beloved thesis supervisor and

advisor, Triwanto Simanjuntak, PhD.

I would like to thank Michael Earley for the help and all of the inputs as my

thesis proofreader.

I would also like to thank my parents for the wise counsel, support and sympa-

thetic ear that will always be there for me.

Special mention to Lutfi Muzzaki Khairullah, Yazfan Tabah Tahta Bagaskara and

all my family member from aviation engineering batch 2015 for all the great sup-

port as well as providing happy distractions to rest my mind throughout the whole

writing process.

And finally, last but by no means least, for Fidelis Ardani Emiati as my great

extra-support system and for everyone that I have not mentioned yet.

Thank you for all the encouragement.

vi

Contents

Abstract ii

Statement by The Author iii

Committee Approval iv

Acknowledgements v

1 Introduction 1

1.1 Introduction . 1

1.2 Background . 2

1.2.1 ADS-B Messages . 3

1.2.2 ADS-B Receiver . 4

1.3 Problem Statement . 4

1.4 Research Purpose . 5

1.5 Research Scope . 5

1.6 Research Approach . 5

2 Literature Review 7

2.1 Air-Traffic Density . 7

2.2 Automatic Dependent Surveillance Broadcast 7

2.2.1 How ADS-B Technology was Introduced 8

2.2.2 Implementation Of ADS-B . 9

2.2.3 How ADS-B Work . 10

ADS-B Receiver . 10

ADS-B Transmitter . 11

2.3 ADS-B Receiver Kit . 11

2.3.1 ADS-B Raspberry-Pi Receiver . 12

2.3.2 ADS-B Message . 13

2.4 Dump1090 Stream Parser . 14

2.4.1 SQLite Database . 15

3 Research Methodology 17

3.1 Assembling The ADS-B Raspberry-Pi System 17

3.1.1 Setting up the Raspberry-Pi . 17

3.1.2 Setting up the RTL-SDR and Dump1090 18

3.2 Placing The Antenna . 19

vii

3.3 Preparing Raspberry-Pi ADS-B Box . 20

3.4 Setting up the Stream Parser . 20

3.5 Processing the Data . 21

3.6 Air-Traffic Volume Analysis . 21

3.6.1 Air-Traffic Volume Analysis based on Flight Level 22

3.6.2 Air-Traffic Volume Analysis based on Latitude and Longitude . 23

4 Results and Discussion 25

4.1 Obtained Data . 25

4.2 Number of Flights Based on ADS-B data 25

4.2.1 Air Traffic Based on Flight Level 26

Flight Level from 0 to 1000 feet 26

Flight Level from 1001 to 2000 feet 27

Flight Level from 2001 to 3000 feet 27

Flight Level from 3001 to 4000 feet 28

Flight Level from 4001 to 5000 feet 28

Flight Level from 5001 feet and above 28

4.2.2 Air Traffic Based on Latitude and Longitude 29

Flight Level from 0 to 1000 feet 29

Flight Level from 1001 to 2000 feet 30

Flight Level from 2001 to 3000 feet 30

Flight Level from 3001 to 4000 feet 30

Flight Level from 4001 to 5000 feet 31

Flight Level from 5001 feet and above 31

5 Conclusions 35

5.1 Conclusions . 35

5.1.1 Air-Traffic Volume by Analyzed the Number of Aircraft using

Flight Level . 35

5.1.2 Air-Traffic Volume by Analyzed the Direction of Aircraft using

Latitude and Longitude . 35

5.2 Recommendations for Further Work . 36

A Function library for Flight Level or Altitude Filtering 37

B Function library for Latitude and Longitude Filtering 44

Bibliography 47

viii

List of Figures

1.1 Air-Traffic Volume In a Certain Region 1

1.2 Airport Surveillance Radar (ASR) . 2

2.1 ADS-B Ground Support . 8

2.2 ADS-B Schematic . 11

2.3 The OpenSky Network Kit, source : www.github.com 12

2.4 Before and After Parser . 14

3.1 dump1090 via http://127.0.0.1:8080 19

3.2 Position of the Antenna. 20

3.3 The antenna was planted on position A. 21

3.4 Raspberry-Pi ADS-B Home-made Box 22

3.5 Flight Level Filtering Flow Chart . 23

3.6 Latitude and Longitude Filtering Flow Chart 24

4.1 Number of Aircraft at Flight Level 1 . 26

4.2 Number of Aircraft at Flight Level 2 . 27

4.3 Number of Aircraft at Flight Level 3 . 28

4.4 Number of Aircraft at Flight Level 4 . 29

4.5 Number of Aircraft at Flight Level 5 . 30

4.6 Number of Aircraft at Flight Level 6 . 31

4.7 Air-Traffic Volume During the Collecting Period 32

4.8 Flight Level 1 With Latitude and Longitude 33

4.9 Flight Level 2 With Latitude and Longitude 33

4.10 Flight Level 3 With Latitude and Longitude 33

4.11 Flight Level 4 With Latitude and Longitude 34

4.12 Flight Level 5 With Latitude and Longitude 34

4.13 Flight Level 6 With Latitude and Longitude 34

ix

List of Tables

2.1 Specification ADS-B Antennas 1090 MHz 13

4.1 Averages and Standard Deviations . 31

x

List of Abbreviations

ATS Air Traffic Service

ADS-B Automatic Dependent Surveillance Broadcast

ATC Air Traffic Control

GNSS Global Navigation Satellite System

GPS Global Positioning System

PSR Primary Surveillance Radar

SSR Secondary Surveillance Radar

ES Extended Squitters

UAT Universal Access Transceiver

FL Flight Level

ASR Airport Surveillance Radar

FIS-B Flight Information Services Broadcast

TIS-B Traffic Information Services Broadcast

NOOBS New Out Of the Box Software

CDTI Cockpit Display of Traffic Information

xi

For all the people I love

1

Chapter 1

Introduction

1.1 Introduction

The Air Traffic Control’s (ATC) goal is to optimize all protection and capacity. Such

that, all aircraft are approved without compromising passenger’s existence with de-

lays. Traffic density is a valuable information to assess the safety and efficiency of

any transport system in terms of traffic flow. On Figure 1.1, air-traffic density is a

study about the movement of several aircraft that fly within a given time span in a

certain region of airspace [2].

FIGURE 1.1: Air-Traffic Volume In a Certain Region

As it is estimated that air traffic will double by 2030 [1], this will cause a higher

density of the traffic which means accident probability will also increase. One of the

busiest airport in Indonesia is Bandara Soekarno-Hatta International Airport. There

are around 1,200 to 1,300 aircraft takes off or landing in a day at Bandara Soekarno-

Hatta International Airport, and also have handled around 63 million of passenger

a year [3]. To maintain and further improvement of safety and efficiency, modern

visualizations and analysis tools must be developed.

Chapter 1. Introduction 2

Air-traffic density can be defined in many ways. In this study, air-traffic density

can be imagined from the flight trajectories and flight path from all gathered data

such as the flight ID, latitude, longitude, and altitude information.

1.2 Background

Air traffic service providers and regulators from all over the world are expanding

into airspace and flight operations to allow traffic flow, capacity, security, and pro-

tection more versatile and adaptable.

FIGURE 1.2: Airport Surveillance Radar (ASR)

Airport Surveillance Radar (ASR) consist of 2 surveillance radar. Primary Surveil-

lance Radar (PSR) and Secondary Surveillance Radar (SSR). These types of radar

have their own weaknesses and their weaknesses are considered poor in providing

complete information about the aircraft. For example, PSR does not provide altitude

and identity. PSR systems are also very expensive to install and maintain compared

to SSR. Although SSR allows communication of identity and altitude, SSR still has

possibilities to report false position or report false altitude [4]. SSR still considered

expensive to install and maintain. The switch from radar surveillance to Automatic

Dependent Surveillance-Broadcast (ADS-B) to monitoring aircraft more effectively

and efficiently on the ground and during flight. ADS-B coverage also improved

compare with ASR which can only controls traffic within a radius of 60 miles (96

km) to 200 Nm (370.4 km).

ADS-B is a device that enhances safety and effectiveness and helps aircraft, con-

trollers airports, airlines, and people directly. The ADS-B is focused on switching

from ground radar and navigation aids to precise tracking of satellite indicators.

The system involves an aircraft with ADS-B determining its position using the GPS.

Chapter 1. Introduction 3

A suitable transmitter then broadcasts that position at rapid intervals, along with

identity, altitude, velocity, and other data.

The ADS-B monitoring systems consist of 2 large-scale systems, 1090 Extended

Squitter (1090ES), which operate on the 1090 MHz base frequency and the Universal

Access Transceiver (UAT), operated on the 978 MHz base frequency. The aircraft

Mode-S Transponder transmits both signals. The 1090ES is used for commercially

and global applications, while the UAT is a regional system that is specially imple-

mented in the United States for aircraft operating under 18,000 feet. Periodically, at

least once every second and without the assistance and interaction of the flight crew

or operator, the data set of airplane information is transmitted automatically.

There are two main components of ADS-B: ADS-B Out and ADS-B In. ADS-

B Out is a system of monitoring for aircraft detection, as ATC requires to manage

traffic. The aircraft’s position, speed and altitude are reported once per second by

ADS-B Out. ATC and nearby aircraft will receive this transmission and this data rep-

resents a radar display equivalent. ADS-B In allows an ADS-B ground station and

other aircraft to be transmitted from an aircraft. This is how weather and traffic in

the cockpit were collected. Strictly optional to add ADS-B In. An approved ADS-B

Out system is required for the ADS-B In operation.

During this discussion of ADS-B, traffic and weather also have their own terms:

FIS-B and TIS-B. Via ADS-B In, FIS-B and TIS-B can only be received. Flight Infor-

mation Services-Broadcast (FIS-B) is a name for Datalink weather. This data is not

transmitted on frequency 1090 MHz. Traffic Information Broadcast Service (TIS-B) is

a monitoring system designed to increase the visibility of pilots in-flight of local traf-

fic. An aircraft must be fitted with a transponder and must be within radar coverage

in order to achieve quality as a TIS-B target.

1.2.1 ADS-B Messages

The main purpose of the ADS-B is to allow all the users to access extremely accurate

information about aircraft’s location and flight path. The ADS-B will broadcast the

data to basically anyone that is listening. Normally, ADS-B messages only have 56

bits of space for data so there are multiples types of messages. The messages can

be translated depends on which version of the dump1090 and what kind of stream

parser is being used.

Automatic Dependent Surveillance-Broadcast (ADS-B) is a satellite-based surveil-

lance system. ADS-B use a Mode-S Extended Squitter (1090 MHz) to transmits the

information about aircraft such as aircraft’s position, velocity, and aircraft identifica-

tion. Most aircraft today continuously broadcast ADS-B messages. ADS-B message

Chapter 1. Introduction 4

has its own structure.

Usually, the ADS-B message is only collected by ATC for the aircraft information.

ADS-B messages are also useful for airlines to track their aircraft and for the histor-

ical data of the aircraft. There is a possibility for the ADS-B messages are provided

not only from the ATC but also from another person who has an ADS-B receiver of

their own and sold the data to the airlines depends on what the airlines need. This

can be an opportunity for the ADS-B receiver owner to provide the ADS-B message

for those who need it.

ADS-B message can also useful for some researchers. OpenSky-Network is one

of the companies that provide ADS-B Data around the world for the Mode S mes-

sages. They also provide an offer to be able to become a receiver by buying the

OpenSky Receiver Kit from Jetvision. The receiver kit is different from what ATC

used for commercials. The OpenSky Receiver Kit is the cheapest receiver that also

recommended for receiving the ADS-B data.

1.2.2 ADS-B Receiver

There are many websites that offered a cheap ADS-B receiver kit. OpenSky-Network

is also offered a cheap ADS-B receiver kit that includes all the hardware equipment

and software that need to set up a receiver. OpenSky-Network offers two alterna-

tives to the receiver kit. The OpenSky Receiver Kit from Jetvision and the Radarcape

which is more expensive from the Jetvision version. The Radarcape is equipped with

an integrated GPS receiver for precise timestamps as required multilateration appli-

cations. Many large networks of air tracking use Radarcape as a standard device.

1.3 Problem Statement

As an effective tool to define aircraft safety and efficiency, air-traffic volume is adopted

[5]. In comparison, the volume of air traffic relates to the degree of congestion and

provides a time-varying perception of traffic in an airspace system. This research

focuses on the movement of several aircraft within a given time span as air traffic

increases are significant in a region with the low cost ADS-B receiver and determine

the air-traffic volume. For ATC purposes, the concept of air-traffic density or volume

is the maximum number of aircraft reaching the field over a certain time period [6].

From all of the information obtained, the visual flight path, the air-traffic volume,

and the movement of air traffic from the ADS-B message can be determined and

observed.

Chapter 1. Introduction 5

1.4 Research Purpose

In collecting the data, a maximum result is preferred in order to make a good re-

sult. A good data collection can also affect the results of data collection. In this

research, the main objectives is to collect the ADS-B messages using the low-cost

receiver system. The ADS-B data will be used to visualized and determined the air-

traffic volume or density. The data that will be used is the data that comes from the

ADS-B receiver as it is.

Air-traffic volume analysis uses complete data as possible. In this research, for

calculating the Air-Traffic Analysis it requires data from the altitude, the hex iden-

tification, time, and date. A comprehensiveness from the required data is very in-

fluencing for calculating the Air-Traffic Analysis. Besides that, there are still many

factors that can cause the data is not 100% able to be analyzed. Through some filter-

ing process, the data will be visible and shows the desired results so the Air-Traffic

Volume or Density can be visualized and determined.

1.5 Research Scope

The limitations in this study is that the antenna is fixed at Cluster Pasadena, Bukit

Dago Housing Estate because of the environment is very supportive. The receiver

cannot be monitored and controlled remotely. There are several other candidates to

implant the antenna, for example the antenna was not permitted to be installed at

the campus building for no reason.

The collecting process is focuses on the movement of aircraft in a region of cov-

erage within a give time (1 month) using the Raspberry-Pi ADS-B receiver system.

1 month is enough to make these two components warm enough to collect the data.

The ADS-B data will be used from the ADS-B receiver with the data as it is.

1.6 Research Approach

To achieve the goal of this research, the data is gathered using the ADS-B Receiver

kit that is able to receive the signals from aircraft in the radius of up to 200 - 300 km

[7] (depending on the environment).

Python is a programming language that is able to read data that has been col-

lected. Some filtering and slicing the data will make the data more visible, by re-

moving some defect data, and made it easier to analyze. In this research, the data

that have been gathered is going to be filtered with a range from the altitude or flight

level and divided into 6 categories. FL1 indicates the Flight Level or altitude from

0 to 1000 feet, FL2 indicates the Flight Level or altitude from 1001 to 2000 feet, FL3

indicates the Flight Level or altitude from 2001 to 3000 feet, FL4 indicates the Flight

Level or altitude from 3001 to 4000 feet, FL5 indicates the Flight Level or altitude

from 4001 to 5000 feet, and FL6 indicates the Flight Level or altitude from 5001 feet

Chapter 1. Introduction 6

and above. Not only the altitude or flight level, the latitude and longitude will also

be categorized according to the Flight Level group. After the filtering process, the

data can be plotted into graphics. Python has a lot of libraries. In this research, all of

the analysis process from filtering to the final result is using python as the program-

ming language. A library such matplotlib is used to plot the graph for the Flight

Level categorize with the date as x-axis, and the number of aircraft as the y-axis.

Basemap is also a python library that used to plot the map with the latitude and

longitude information.

7

Chapter 2

Literature Review

2.1 Air-Traffic Density

A new approach for maintaining aviation safety and efficiency is studying the amount

of aircraft sharing the same airspace. This method is called dynamic density range.

Dynamic density or traffic density is an approach to study traffic flow and forecast

their behavior in the future. Traffic density is an effective tool to assess the safety

and efficiency of the operation of all transport systems. The intensity of air traffic in

this report is used to research the movement of multiple aircraft in a particular area

of airspace within a given time horizon [2]. In comparison, aircraft density corre-

sponds to the congestion degree and provides a time-varying high-level perspective

of traffic in an airspace sector.

2.2 Automatic Dependent Surveillance Broadcast

Automatic Dependent Surveillance-Broadcast (ADS-B) is a surveillance system that

relies on aircraft or vehicles that broadcasting their identity, GPS position, and other

information such as the Hex ID from the onboard systems, that makes the vehicle

can be tracked. For aircraft, the information broadcast will be received by Air Traffic

Control (ATC) ground stations. The signal also can be received by any other aircraft

who installed ADS-B, so other aircraft with ADS-B equipped can get the situational

awareness and enhancing self-separation.

ADS-B has the possibility to replace radar as the primary surveillance for track-

ing and controlling aircraft. It provides more safety by making an aircraft more

visible for the ATC or any other aircraft who equipped ADS-B with flight data, like

position and velocity transmitted every second. ADS-B is built in 2 different services.

ADS-B In and ADS-B Out. ADS-B In and ADS-B Out are the two different services

provided by the ADS-B in general, it can provide traffic and graphical weather infor-

mation through Traffic Information Service-Broadcast (TIS-B) and Flight Information

Service-Broadcast (FIS-B) applications.

Chapter 2. Literature Review 8

FIGURE 2.1: ADS-B Ground Support

• ADS-B In

ADS-B In is the recipient part of the system. This allows ADS-B ground sta-

tions and other aircraft to receive the transmission. This is how pilots can

get subscription-free weather and traffic in the cockpit. Adding ADS-B In is

strictly optional. While it offers some great benefits, the FAA is only concerned

about equipping ADS-B out-the free weather and traffic is simply the carrot to

get to write the check.

• ADS-B Out

ADS-B Out equipment will continuously transmit aircraft data such as air-

speed, altitude, and location to ADS-B ground stations. Those data are then

transmitted to air traffic control stations. This transmission is received by ATC

and nearby aircraft and this data make up the equivalent of a radar display.

Note that there are combinations of ADS-B Out and ADS-B In. Out-only equip-

ment that simply meets the FAA requirement, while in-only receive weather infor-

mation, and ADS-B In/Out products do it all.

2.2.1 How ADS-B Technology was Introduced

Regions such as America, Australia, and Fiji create an infrastructure for ADS-B. In

the U.S. Gulf of Mexico’s oil and gas fields, helicopter traffic is high. ADS-B is used

to enhance visibility, traffic information is now used where there is no radar service.

Another area where ADS-B is expected to bring real benefits as it is implemented in

the congestion of airspace around the east coast of America. For the first time in the

Australian Outback ADS-B will enable aircraft to maintain and monitoring capabil-

ity via direct air-to-air contact with 1090ES. The FAA estimates that the cost to the

U.S. economy will be $22 billion in lost economic activity by 2022 without changes

Chapter 2. Literature Review 9

to the U.S. air traffic infrastructure (of which ADS-B technology is one part.). The

U.S. Air Surveillance Program, which includes ADS-B is known as ’Next Gen’. This

program is expected to have a consumption of 1.4 billion gallons, reduced emissions

of 14 million tons and cost savings valued at $23 billion. While these estimates are

based on commercial flight operations, there is no doubt that ADS-B will also have

a positive effect on GA (General Aviation). [8].

2.2.2 Implementation Of ADS-B

In North America, Europe and other countries, including Asia / Pacific, ADS-B is

currently being introduced. The final rule states that aircraft operating in airspace

specified in 91.225 must have an ADS-B system with a qualified location origin ca-

pable of meeting the requirements set out in 91.227 effective January 1, 2020. These

regulations establish a minimum performance standard for both the ADS-B trans-

mitter and the position sources integrated with your aircraft’s ADS-B equipment. In

North America, Europe, and other fields such as the Asia-Pacific region, ADS-B is

currently in progress. EUROCAE and RTCA are creating the criteria of ADS-B to-

gether [9].

For aircraft equipment, the ADS-B Out capability onboard is enabled by transpon-

ders interfaced with the relevant avionics systems (such as GNSS, pressure altime-

ters, etc.). Many aircraft already have the ADS-B ES capacity packaged in Mode S

Enhanced Surveillance systems for central European airspace. The ADS-B In fea-

ture includes a detector and a network of processing system (traffic computer) and

HMI unit (often called Cockpit Display of Traffic Information - CDTI). In the For-

ward field of view, or in the shape of the so-called Electronic Flight Bag (EFB), the

ADS-B In system could be integrated. For ADS-B functional use, regulatory author-

ities need to be accredited and authorized. The relevant certification documents are

EASA AMC 20-24 for ADS-B In Non-Radar Airspace or CS-ACNS for “ADS-B Out”.

For ground equipment, The ADS-B data are collected at ADS-B stations by air-

craft or airport vehicles. In most cases the output of the ADS-B Grounds will be

sent to the data processing and distribution systems of surveillance, fused to create

a traffic situation image for users by inputs from other possible surveillance sensors

[9].

Mode S (1090 MHz) ADS-B systems shall meet with TSO-C166b Technical Stan-

dard performance requirements. The aircraft must be fitted with ADS-B Mode S-

transponder-based transmitter for the aircraft flying at or above FL180 (18,000 feet).

The aircraft need to be fitted with either an Extended Squitter Mode S transponder

or Universal Access Transceiver (UAT) compatible with the TSO-C154c performance

requirements for a plane flying under 18,000 feet and within US airspace. The UAT

hardware offers the ability to receive information from the FAA ADS-B network on

Chapter 2. Literature Review 10

traffic and weather.

The ADS-B rules provisions refer only to airspace as specified in 14 CFR 91.225,

whether or not they are working on a VFR or IFR basis. It is an airspace policy which

does not extend outside of established airspace to any type of operation. ADS-B Out

in the same airspace is mostly required where transponders are necessary [10].

Since late 2006, Indonesia and collaborating partners of Air Service Australia

(ASA), SITA and Thales have been installed three ADS-B ground-stations for trials.

In Bali, Kupang, and Natuna both ground stations are situated. That was the first

phase in ADS-B deployment in Indonesia until the DGCA’s functional level. In-

donesia has currently installed 30 ADS-B ground and 1 ADS-B ground station in 30

different locations with a dual system, using 1090 Mode S Extended Squitter technol-

ogy developed to 2014, with a single system for the testbed purpose of each station.

All stations are operating independently and all stations are being used at this time

to promote ATC daily activities and situational awareness. Nevertheless, in 2017,

following the publication of AIRAC AIP Supp Nr. 08/15, DGCA said that ADS-B

will be applied to ATS surveillance separation (Air Traffic Service) 245 up to FL 600

from flight level (FL) [11].

2.2.3 How ADS-B Work

ADS-B system in which electronic equipment transmits the exact location of the air-

craft automatically through a digital data link onboard an aircraft. ADS-B technol-

ogy uses GNSS (Global Navigation Satellite System) Constellation to track an aircraft

and transmits the aircraft’s exact location to the closest ADS-B ground station twice

in a second. The aircraft signal is then transmitted by the ground station and sent

the data directly to ATC air services through a satellite connection. The data can be

used on boards without the need for radar by other aircraft or ATC to indicate the

location and height of the aircraft [12].

ADS-B Receiver

In the general receiver system, the 1090 MHz Extended Squitter is the receiver for

the ADS-B system. ATC ground stations and aircraft fitted with the Traffic Collision

Avoidance System (TCAS) are already equipped with 1090 MHz (Mode S) receivers

necessary to be able to transmit the ADS-B signals [13].

In this research, the ADS-B receiver needs to be set up. Have to do some in-

stalling and setting because of the receiver is made by some different components.

The main component for the receiver system is the Antenna and the RTL-SDR.

Chapter 2. Literature Review 11

gnss constellation

Aircraft

ADS-b receiver

air traffic control

FIGURE 2.2: ADS-B Schematic

ADS-B Transmitter

ADS-B utilizes GPS satellites usually to relay coordinates to ground stations and

other aircraft directly. This also known as ADS-B Out and is more accurate than

using the standard system of radar monitoring. This eliminates the necessary sep-

aration gap between aircraft fitted with ADS-B by air traffic controllers. The Inter-

national ICAO ADS-B standard is classified as 1090 MHz or more commonly called

1090ES (Extended Squitter). The ADS-B used that frequency to transmit the infor-

mation. Now aircraft fitted with a Mode S transponder capable of ADS-B will use

something called "Extended Squitter" to relay the ADS-B Out data, in common with

airlines. The Extended Squitter is simply the extended communication range of the

transponder. This includes an ADS-B information data packet. Each data package

includes unique information on an aircraft, such as its location, speed, and identity.

2.3 ADS-B Receiver Kit

The kit on Figure 2.3, consists of the following parts:

1. The Raspberry-Pi

• 1x Raspberry-Pi 3 Model B (A)

• 1x Raspberry-Pi Universal Power Supply (B)

• 1x Big Chip cooler (C)

Chapter 2. Literature Review 12

FIGURE 2.3: The OpenSky Network Kit, source : www.github.com

• 1x Small Chip cooler (D)

2. The Case

• 1x OpenSky Raspberry-Pi Case (E), (F), (G)

• 4x Screw + 1x spare screw (H)

3. 1x SD card containing the OpenSky receiver image

4. 1x RTL-SDR USB dongle

5. 1x Jetvision A3 ADS-B antenna 1090 MHz

6. 1x Antenna mounting bracket

7. 1x 15m low-loss coax cable

2.3.1 ADS-B Raspberry-Pi Receiver

The ADS-B receiver system is divided into 2 components; the Raspberry-Pi set, and

the receiver. The Raspberry-Pi set components are Raspberry-Pi 3 Model B+, Mem-

ory Card 32GB MicroSDHC Class 10, 2 Heatsinks, and Raspberry-Pi Case. This

Raspberry-Pi model 3 came with 4 USB 2 ports, Full-size HDMI, 1 GB RAM, Quad-

Core 1.2GHz Broadcom 64bit CPU, Wireless LAN and Bluetooth Low Energy (BLE)

on board, Micro SD port for loading the operating system and storing the data, and

Micro USB power source up to 2.5A. Raspberry-Pi also has extra ports for CSI cam-

era for connecting a Raspberry-Pi camera and a DSI display port for connecting a

Raspberry-Pi touchscreen display. This port also can be installed a mini fan, but

if 2 heat-sinks are already installed, the mini fan can be another option. Since the

Chapter 2. Literature Review 13

Raspberry-Pi is only a computer, a mouse, a keyboard, and a display output is also

important for doing the installation.

Electrical Data ADS-B 1090 MHz Antenna

Type Ground Plane Colinear 3x 1/2 λ

Design Frequency 1090 MHz (ADS-B system)
Impedance 50 Ω

Radiation (H-plane) 360°omnidirectional
Radiation (E-plane) Beamwidth @ -3 dB: 23.8°

Polarization Linear Vertical
Gain 4.8 dBi

Maximum Transmit Power 10 W cw, 500 W peak
Grounding Protection All metal parts are DC-grounded, the inner conductor shows an open circuit

Connector N-female, gold plated central pin

TABLE 2.1: Specification ADS-B Antennas 1090 MHz

The Receiver components are ADS-B Antenna with N Female Connector, Cable

N Male – SMA Male, and USB RTL-SDR. The ADS-B Antenna component is using

the Jetvision A3 ADS-B Antenna 1090 MHz with the specification on Table 2.1 which

also suitable for the RTL-SDR R820T2 RTL2832U. This dongle is a good choice to be

used as a stable ADS-B receiver (1090 MHz). The N Male - SMA Male Cable is the

cable to connect between the antenna to the RTL-SDR. Since the RTL-SDR dongle is

also powered using 4.5 V USB, it does not need another connector to the Raspberry-

Pi.

2.3.2 ADS-B Message

There are several methods that the antenna can receive the ADS-B message. Usu-

ally, the ADS-B message comes with 112 bits long, but there are many ways to be

able to read the ADS-B message. For example, the dump1090 stream parser method

provides a method to collect the ADS-B message. Dump1090 stream parser is a

software that takes a dump1090 stream of ADS-B messages and plops them into an

SQLite database with a timestamp.

Dump1090 is a Mode S decoder designed for the RTL-SDR USB dongle devices.

This needs to be installed and checked out first before use the dump1090.

Some other methods to collect the ADS-B message is by using the dump1090

and start the dump1090 in the interactive mode from the command prompt/termi-

nal. This will create another collected message in the directory of the computer.

The database message is basically an SQLite database message. It needs sqlite3

library on python, in order to read the actual message and to be able to understand

the message. There are 23 fields in the SQLite database message [14].

Chapter 2. Literature Review 14

Each message comes with different outputs. For some message is heavy and for

some is light to read, depends on how long the data have been gathered and the

position of the antenna. It will take more time to be able to read or process the data

if the data is heavy.

2.4 Dump1090 Stream Parser

Before start using the stream parser, the data was gathered using the interactive

mode method. As seen on Figure 2.4a, the interactive mode comes with a (.txt) file

format which can only be display, not read the data. The streamed data are cluttered

and are not readily accessible to be processed. Because the data cannot be read, then

the data cannot also trough some filtering or slicing.

(A) Interactive mode with (.txt) format file

(B) After Parsed (.db) format file

FIGURE 2.4: Before and After Parser

Chapter 2. Literature Review 15

In this study, the parser takes the signals and builds a new data structure in the

form of a database. Parser it self is a compiler that breaks data into smaller elements

for easy translation into another language. On Figure 2.4b is example from using the

stream parser.

2.4.1 SQLite Database

The stream parser software uses a dump1090 stream of ADS-B message and plops

them into an SQLite database. The database will create and start populating an

SQLite database named adsb_messages.db in the current directory of the computer.

Without the stream parser, the message can only be view on display as seen on

Figure 3.1. The message is also not saved in the memory. As soon the aircraft is out

of range from the antenna, the aircraft information can not be seen.

It can start the SQLite by running on the current machine, using the terminal/-

command prompt by typing pythondump1090-stream-parser.py [15]. The dump1090-stream-parser.

py contains a python coding that can start parsing the data automatically.

The data is stored in a table called squitters. The message contains 23 fields with

different information. The fields are the Message Type, Transmission Type, Session

ID, Aircraft ID, Hex Ident, Flight ID, Generated Time, Generated Date, Logged Time,

Logged Date, Callsign, Altitude, GroundSpeed, Track, Latitude, Longitude, Vertical

Rate, Squawk, Alert, Emergency, SPI (Ident), Is On-Ground, and Parsed Time.

There are six types of the Message Type - MSG, SEL, ID, AIR, STA, and CLK.

The MSG (Transmission Message) means that the message is generated by the air-

craft and also there are eight different types of MSG. The SEL (Selection Change

Message) means that the message is generated when the user changes the selected

aircraft in Base Station. The ID is New ID Message type, which is generated when an

aircraft being tracked sets or changes its callsign. The AIR (New Aircraft Message)

is generated when the SBS (Surveillance and Broadcast Services) picks up a signal

for an aircraft that it isn’t currently tracking. The STA (Status Change Message) is

generated when an aircraft’s status changes according to the time-out values in the

Data Settings menu. And the last type is CLK (click message). CLK is generated

when the user double-clicks on an aircraft.

The Transmission Type is not used by other messages types. This Transmission

Type is like MSG subtypes 1 to 8. The session ID is the database session record

number, the Aircraft ID is the database aircraft record number, and the Flight ID is

database flight record number. The Hex Ident is the Aircraft Mode S hexadecimal

code, similar to the ICAO24.

python dump1090-stream-parser.py
dump1090-stream-parser.py
dump1090-stream-parser.py

Chapter 2. Literature Review 16

The Callsign is an eight-digit flight ID. It can be a flight number or flight registra-

tion. The Altitude is a Mode C altitude. Height is relative to 1013.mb (Flight Level).

The Ground Speed field is the speed over ground, which is not indicated airspeed.

The Track field is the track of the aircraft (not heading). The Track field is derived

from the velocity East/West and velocity North/South. The next field is Latitude

which is North and East for the positive value, and South and West for the negative

value. The value is also applied for the Longitude field. The Vertical Rate field is the

64ft resolution. The Squawk field is assigned Mode A squawk code. The next field

is Alert, which is indicated for changing squawk. The next field is Emergency. The

Emergency field is a sign to indicate emergency code has been set. The SPI is a sign

to indicate transponder Ident has been activated. The Is On Ground field is also a

sign to indicate the ground squat switch. The last field is Parsed Time. This field

gives information about when the data is being parsed.

17

Chapter 3

Research Methodology

The steps taken in this research are based on the steps that contained in the manual

inside the ADS-B Raspberry-Pi kit. The steps shows how to assemble, the installa-

tion, and other guide that demonstrate how to collect the signals or messages. The

guide also available on the official website [7].

3.1 Assembling The ADS-B Raspberry-Pi System

As seen on Figure 2.3, the components are mostly already in pieces, except for the

Raspberry-Pi. The Raspberry-Pi needs to be assemble. There are 2 cooler chip for

the Raspberry-Pi that needs to be place on the Raspberry-Pi. After that, Raspberry-

Pi can be placed inside the case.

The SD Card is installed with the preinstalled software. Because of the interface,

the SD Card will be filled with NOOBS (New Out Of the Box Software). NOOBS is

an OS installer which contains Raspbian. With Raspbian, the interface will more like

a normal computer, which make it easier to operate.

3.1.1 Setting up the Raspberry-Pi

First off, the SD card needs to be formated by using any SD memory card formatter

software. Insert the SD card into the PC using the SD adapter. After that, format the

SD card. Make sure that the SD card is selected for the correct drive letter. The SD

card can be formatted with a full erase option and format it with the size adjustment

off. After done formatting, the SD card, copy the downloaded-unzipped NOOBS

files to the formatted SD card. Safely eject the SD card is important to prevent the

error happened on the SD card later on.

After safely eject the SD card from the PC, the SD card can be inserted into the

Raspberry-Pi. Connecting the power supply must be connected after inserting the

SD card. Same with other CPU, Raspberry-Pi also needs to connect with the HDMI

cable to the monitor (since the Raspberry-Pi only had an HDMI output) and a key-

board and mouse are also important. After connecting with all the needs, continue

Chapter 3. Research Methodology 18

with performing the Raspbian installation. It will offer a choice when the Raspberry-

Pi is on. There should be a box for Raspbian. Check the box, and then click install.

There will be some warning dialog, and just need to click Yes and then continue the

installation by itself. It will take a while. When the Raspbian has been installed,

proceed with click Ok and the Raspberry-Pi will restart and then boot up by itself.

The Raspberry-Pi with Raspbian software is ready to go.

To make sure that the Raspbian is up to date, connect the Raspberry-Pi with an

internet connection. After that, open the command line and type:

sudo apt-get update

sudo apt-get upgrade

Install the git-core and git by typing:

sudo apt-get install git-core git

After some update and upgrades are installed, reboot the Raspberry-Pi, and

the Raspberry-Pi is ready to be used for setting up the RTL-SDR drivers and the

dump1090 [7].

3.1.2 Setting up the RTL-SDR and Dump1090

There are many Raspberry-Pi ADS-B installers that provided many websites. In this

project, the RTL-SDR drivers and dump1090 are checked out from the Raspberry-Pi-

project that provided on Github.

The first thing to do is to download the package from the GitHub. Download the

package by typing:

cd ∼

git clone https://github.com/openskynetwork/raspberry-pi-adsb.git

The package can be download because of the git-core and git installation. The

raspberry-pi-adsb.git is the package to set up the RTL-SDR and dump1090. First,

install the RTL-SDR. To install the RTL-SDR receiver, it needs to build and install by

typing:

cd ∼/raspberry-pi-adsb

./setup-rtl-sdr.sh

The installation will be prompted to reboot after the set up is done. After the

system is rebooted, the RTL-SDR was compiled and installed successfully.

Chapter 3. Research Methodology 19

After the RTL-SDR is successfully installed, continue to install the dump1090.

The dump1090 is the signal decoder that coming from the RTL-SDR receiver. To in-

stall and build the dump1090, type:

cd ∼/raspberry-pi-adsb

./setup-dump1090.sh

The setup-dump1090.shwill install the dump1090 as a service so that the dump1090

starts automatically after the system restart. The Raspberry-Pi will be once again

prompted to reboot after the installation. After the system is rebooted, check the

dump1090 if it’s running correctly. In the browser on Raspberry-Pi, type http:

//127.0.0.1:8080 and there should be a map with planes, as seen on Figure 3.1.

Just to make sure that the receiver works properly, this map is not very useful for

further analysis. Even if the receiver can get the ADS-B signal, that does not mean

the ADS-B data is saved in the Raspberry-Pi SD memory card. There is some stream

parser package that needs to be installed in the Raspberry-Pi in order to be able to

save the ADS-B data.

FIGURE 3.1: dump1090 via http://127.0.0.1:8080

3.2 Placing The Antenna

The antenna is implanted at Cluster Pasadena, Bukit Dago Housing Estate (6°21’35.8"S

- 10°642’19.1"E).

The data collection starts at 09/26/2019 10:10 am. On Figure 3.3, the advan-

tage of placing the antenna in this place have a clear view, which is there are no tall

buildings, trees, and any other higher obstacles near around the antenna position. It

is very recommended since the antenna has 360°omnidirectional.

http://127.0.0.1:8080
http://127.0.0.1:8080

Chapter 3. Research Methodology 20

FIGURE 3.2: Position of the Antenna.

In Figure 3.2 the distance between the position of the antenna to Soekarno-Hatta

International Airport is 26.4 km, from the antenna to Halim PerdanaKusuma Airport

is 22.3 km, from the antenna to Kemayoran Airport is 27.5 km, and from the antenna

to Bandara Udara Pondok Cabe is 6.86 km.

3.3 Preparing Raspberry-Pi ADS-B Box

The receiver system is not comes with a cooling system. 2 heat-sinks is not enough

for cooling the Raspberry-Pi. It comes with an idea to made a box with cooling

system, at least an air blow for both Raspberry-Pi and the RTL-SDR. As seen on

Figure 3.4, this Raspberry-Pi ADS-B Box is made out of a shoes box, with a little

fan attach on top of it. The box contains the Raspberry-Pi and the RTL-SDR. Both

components are easily become hot when both of the components work for more than

24 hours.

3.4 Setting up the Stream Parser

This dump1090 Stream Parser software need a dump1090 stream of ADS-B messages

and put them into an SQLite database with the human-timestamp. It will need a

dump1090 running on the current machine.

First thing to do is to clone or download the py file on the website. Then, the

cloned or downloaded file needs to be on the directory folder on the Raspberry-Pi.

Chapter 3. Research Methodology 21

FIGURE 3.3: The antenna was planted on position A.

After that, open the command line and type:

python dump1090-stream-parser.py

The py file contains a stream parser that enable the ADS-B signal saved into the

Raspberry-Pi. The py file will create and start collecting and put it into the SQLite

database called adsb_messages.db in the Raspberry-Pi current directory. In order to

read the file, the data is stored in a table named squitters.

3.5 Processing the Data

The ADS-B message will be read by Chunk that is divided by its date. The original

filtered by date will also stored in another CSV file, just in case, for further use. After

the specific date is gathered, then removing the defect data and also divided by its

Flight Level group. The defect data means the message that had no information

about the altitude or the latitude and longitude during the plotting.

Each date is also filtered per hour in order to made it easier to be input to the

new CSV file. The filtering processes are done for the purpose to reduce cluttering.

3.6 Air-Traffic Volume Analysis

In this study, each of the aircraft that entering the area was monitored and its path

or trajectories were recorded using the collected ADS-B data. From the Latitude and

Chapter 3. Research Methodology 22

FIGURE 3.4: Raspberry-Pi ADS-B Home-made Box

the Longitude information, the aircraft can be plotted on any point or any place.

This research will also investigate the traffics by the Altitudes of aircraft Flight Level

(FL) to identify the traffic on each day.

3.6.1 Air-Traffic Volume Analysis based on Flight Level

The altitude or aircraft Flight Level (FL) was grouped into 6 flight level;

• Flight level 1 from 0 to 1000 feet

• Flight level 2 from 1001 to 2000 feet

• Flight level 3 from 2001 to 3000 feet

• Flight level 4 from 3001 to 4000 feet

• Flight level 5 from 4001 to 5000 feet

• Flight level 6 from 5001 feet and above

The obtained data will be categorize based on the vertical separation that a mini-

mum altitude of 1,000 feet should be considered safe and no aircraft should approach

more than 1,000 feet vertically to be monitored [16].

The collected data covered flight movement only if the receiver received. This

study only focused on the available data. The defect data for the altitude or Flight

Level is removed during the filtering process.

The defect data is removed because in this research, the position message takes

two messages to get the latitude and longitude. So if the massage haven’t got the

second message yet, the message will get altitude but not latitude or longitude.

Chapter 3. Research Methodology 23

Read The CSV1 Count per Flight
Level

Divided into Chunk
by date

Connect to Database
file Remove defect data

Filter per hourFilter per Flight LevelCreate a new list

Save into CSV1

Plot using Matplotlib Save into CSV2

FIGURE 3.5: Flight Level Filtering Flow Chart

The Figure 3.5 shows the filtering process from the flight level filter until plotting

the graph. Since the data is an SQLite Database, it needs to be read using sqlite3

library in python. The chunk process is divided by date, not using the chunksize

method, because every chunk not contains with same date. Removing the defect

data will make the data more smaller, make it more visible and lighter to be read.

After removing the defect data, the next step is to divided the data with date into

hours. The new list was create for the flight level that have been filtered and append

for the next chunk, and then save into CSV1. Count per Flight Level is perform

because the CSV1 totaled per hour, there is no total flight per day with specific flight

level. After the count succeed, save into a new CSV2 to perform the plotting.

3.6.2 Air-Traffic Volume Analysis based on Latitude and Longitude

The Latitude and Longitude were also grouped based on the Flight Level. Through

some filtering, the defect data also will be removed. To prove that the data is filtered

correctly while filtering the data, the screening process also includes the date.

Figure 3.6 shows the filtering process for filtering the Latitude and Longitude

that also group based on the Flight Level. The filtering process also start with read

Chapter 3. Research Methodology 24

Connect to Database
file

Divided into Chunk
by chunksize

Remove defect data
from Latitude column

Save into CSV1Read the CSV1

Filter per Flight Level

Filtering the data with
Latitude and

Longitude limitation

Plot using BasemapSave into CSV2

FIGURE 3.6: Latitude and Longitude Filtering Flow Chart

the Database file with sqlite3 library in python. The chunk process is divided by

chunksize, which in this research the chunksize is 1 million per chunk. Remove the

defect data from the Latitude will also remove the defect data for the Longitude.

Filtering per flight level is also performed in this plot. After the filtering per flight

level is complete, save into a new CSV1 file for limiting the Latitude and Longitude

value. There are some Latitude and Longitude with a value that outside the Indone-

sia Latitude and Longitude, that makes the position that on the Indonesia territory

looks small and less visible to be analyze. Save into another new CSV2, to be able to

plot using the Basemap library.

25

Chapter 4

Results and Discussion

4.1 Obtained Data

The data is start collecting from the 26th of October with a period of 1 month col-

lecting. It is as expected that the data will be large. At the end of the day, the data

is around 12.03 GB. It also large enough to be read on python, so the data cannot be

read in an ordinary way. Since the data is large, there are many ways to read the

data and one of them is to read by chunk. Chunk method is by breaking a list into

pieces of size N in python. The N is defined by a maximum request size per chunk.

After reading the data by chunk, the data has 89.338.383 million rows and 23

columns in total. There are a view days of electricity problem, that made the data

need to be re-run in order to continue gathering the data. The data was cut from the

28th of September until the 1st of October. The receiver cannot be controlled from a

distance, so the receiver needs to be re-run the stream parser manually. Overall, the

data that have the information start from the 26th of September, 27th of September,

and continues from the 2nd of October at 4 pm until the 25th of October. Unfortu-

nately, the receiver is once again shut off automatically on the 26th of October at 1

am-midnight. In total, only 26 days of data that have the information for the ADS-B

message.

Through the filtering process, there are 51.734.305 data that have the altitude

information, and 15.563.095 data that have the altitude, latitude and longitude infor-

mation. That is around 57.91% that have the altitude information, and 17.42% have

the altitude, latitude and longitude information. The maximum altitude or flight

level that the data have captured is at 61,600 feet and for the minimum is at 0 feet.

During the filtering process, while gathering the altitude information not all the al-

titude attached with the latitude and longitude information, but while gathering the

data for the latitude and longitude the altitude information attached with it.

4.2 Number of Flights Based on ADS-B data

In this research, the data set contains the latitude, longitude, and altitude of all

flighted aircraft within more or less one month. Their unique ICAO number is de-

fined for each aircraft. This includes all other flight information kept in a 0 to the

Chapter 4. Results and Discussion 26

highest altitude and class of 6 Flight Level levels.

4.2.1 Air Traffic Based on Flight Level

The data that was collected was filtered and gathered on a different CSV file. The

filtering code can be seen in Appendix A. Each file is named by their group of 6 dif-

ferent Flight Levels and containing date and number of unique aircraft. The graphics

are made on scatters and colored with the same tone on each day. The results in Fig-

ure 4.1, Figure 4.2, Figure 4.3, Figure 4.4, Figure 4.5, and Figure 4.6 shows how many

aircraft flew on the altitude of aircraft per day.

Flight Level from 0 to 1000 feet

2019-10-05

2019-10-09

2019-10-13

2019-10-17

2019-10-21

2019-10-25

Day

700

725

750

775

800

825

850

Nu
m

be
r o

f A
irc

ra
ft

FIGURE 4.1: Number of Aircraft at Flight Level 1

From Figure 4.1, the graph shows the number of aircraft with altitude or flight

level between 0 to 1000 feet. The figure shows that 4th October 2019 has the highest

value and 12th October 2019 has the lowest number. Then, follow by 6th October

2019 has the second-highest value. The average of the total number of flights for 23

days is 778 per day.

Chapter 4. Results and Discussion 27

2019-10-05

2019-10-09

2019-10-13

2019-10-17

2019-10-21

2019-10-25

Day

800

820

840

860

880

900

920

940

960
Nu

m
be

r o
f A

irc
ra

ft

FIGURE 4.2: Number of Aircraft at Flight Level 2

Flight Level from 1001 to 2000 feet

The Figure 4.2 indicates the number of aircraft from altitude or flight level between

1001 to 2000 feet. The figure has an average of the total number of aircraft is 834

aircraft per day. In the figure above has the highest number on 20th October 2019

with a value of 955 and the lowest value is on 12th October 2019 with a value of 794

aircraft. On 9th October 2019 have a similar value with 15th October 2019 which is

858 aircraft on both days. The same value also happens on 19th October 2019 and

23rd October 2019 with 840 aircraft.

Flight Level from 2001 to 3000 feet

From Figure 4.3, the chart shows the number of aircraft at altitude or flight level

between 2001 and 3000 feet. On 20th October 2019, the value is 960 aircraft which

is the highest value and on 12th October 2019 has the lowest number. This has a

similar case with 4.2 graph. On the 3rd of October 2019 has the same value as 16th

October 2019 which is 834. It maybe looks similar, but on 5th October 2019 and on

9th October 2019 have a difference only 1 aircraft. The average of the total aircraft

on flight level 3 is 842 per day.

Chapter 4. Results and Discussion 28

2019-10-05

2019-10-09

2019-10-13

2019-10-17

2019-10-21

2019-10-25

Day

800

820

840

860

880

900

920

940

960
Nu

m
be

r o
f A

irc
ra

ft

FIGURE 4.3: Number of Aircraft at Flight Level 3

Flight Level from 3001 to 4000 feet

Figure 4.4 shows the graph of altitude for flights between 3001 to 4000 feet. 13th

October 2019 has the highest value with 906 aircraft. Then, follow by 11th October

2019 and 6th October 2019. Meanwhile, 12th October 2019 has the lowest value of

the total number of aircraft compared to 24th October 2019, 15th October 2019 and

16th October 2019. The average of the total aircraft is 801 per day. 19th October 2019

and 22nd October 2019 has the same value, which is 756 aircraft.

Flight Level from 4001 to 5000 feet

Figure 4.5 indicates the number of aircraft from altitude or flight level between 4001

to 5000 feet. The figure shows an average of the total aircraft on flight level 5 is 767.

13th October 2019 has the highest value and on 19th October 2019 has the lowest

value. 17th October 2019 and 23rd October 2019 has the same value which is 739

aircraft.

Flight Level from 5001 feet and above

Figure 4.6 indicates the number of aircraft from altitude or flight level between 5001

feet and above. The Figure 4.6 has the highest number of aircraft on 4th October

2019 which is 1262 aircraft, and the lowest number of aircraft is on 12th October

2019 which is 1049 number or aircraft. The average for this flight level si quite big

Chapter 4. Results and Discussion 29

2019-10-05

2019-10-09

2019-10-13

2019-10-17

2019-10-21

2019-10-25

Day

725

750

775

800

825

850

875

900
Nu

m
be

r o
f A

irc
ra

ft

FIGURE 4.4: Number of Aircraft at Flight Level 4

since the data starts from 5001 and reach the highest flight level available on the

data, which is 1193 number of aircraft per day.

On Figure 4.7 shows the averages and standard deviations. The exact value was

provided on Table 4.1.

4.2.2 Air Traffic Based on Latitude and Longitude

The dataset contains information about all the Latitude and Longitude records that

gathered by the ADS-B receiver. After a few filtering process, the data left with

15.563.095 information about the Latitude and Longitude only. The filtering codes

refer to Appendix B. That value includes with the uncertainties of the dataset, that

leave with doubts after plotting with Basemap. Each aircraft is identified by their

unique Hex ID. It also divided by flight level that group into 6 groups of flight level.

Flight Level from 0 to 1000 feet

The 4.8 shows the location of aircraft with flight level from 0 to 1000 feet. There

are 1166 of unique aircraft that have the Latitude and Longitude information which

have the flight level between 0 to 1000 feet. As shown on the Figure 4.8, there are 2

group for aircraft that scattered around, but still around the island.

Chapter 4. Results and Discussion 30

2019-10-05

2019-10-09

2019-10-13

2019-10-17

2019-10-21

2019-10-25

Day

675

700

725

750

775

800

825

850

875
Nu

m
be

r o
f A

irc
ra

ft

FIGURE 4.5: Number of Aircraft at Flight Level 5

Flight Level from 1001 to 2000 feet

Figure 4.9 indicates the location of the aircraft between flight level 1001 to 2000 feet.

1232 of unique aircraft that is on this plot that have the information about the Lat-

itude and Longitude. The scattered aircraft as seen on Figure 4.8 is missing. There

is a possibility that those aircraft are already landed, so the aircraft are not sending

their information again after the transition is complete.

Flight Level from 2001 to 3000 feet

Figure 4.10 illustrates the location of the aircraft between flight level 2001 to 3000

feet. There are 1225 aircraft with different identity. From the latitude and longitude

on the Figure 4.10, there is no aircraft that have a Longitude over 107.6°E and Lat-

itude over 6.97°S. From Figure 4.9, the number of aircraft have decreased, but the

path on Figure 4.10 is wider.

Flight Level from 3001 to 4000 feet

Figure 4.11 display the location of the aircraft between flight level 3001 to 4000 feet.

In this Figure, there are 1193 of different aircraft with different identities. From Fig-

ure 4.11 the area of the aircraft is getting wider, not because of the total of the aircraft,

but because there are more aircraft with flight level 3001 to 4000 feet and that have

more information about their Latitude and Longitude.

Chapter 4. Results and Discussion 31

2019-10-05

2019-10-09

2019-10-13

2019-10-17

2019-10-21

2019-10-25

Day

1050

1100

1150

1200

1250
Nu

m
be

r o
f A

irc
ra

ft

FIGURE 4.6: Number of Aircraft at Flight Level 6

Flight Level from 4001 to 5000 feet

Figure 4.12 depict the location of aircraft with flight level 3001 to 4000 feet. There

are 1190 of different aircraft identities in this flight level. In this Figure, the aircraft

is beginning to spread further and wider.

Flight Level from 5001 feet and above

The Figure 4.13 illustrates the amount of information or location of the aircraft with

flight level 5001 feet and above. In this group, there is no limit maximum for the

Flight Level Averages Standard Deviations

FL1 778.086 45.07
FL2 871.652 43.13
FL3 876.913 46.083
FL4 801.217 50.251
FL5 767.304 49.292
FL6 1144.304 62.369

TABLE 4.1: Averages and Standard Deviations

Chapter 4. Results and Discussion 32

FL1 FL2 FL3 FL4 FL5 FL6
0

200

400

600

800

1000

1200
Av

er
ag

e
nu

m
be

r o
f a

irc
ra

ft
in

 fl
ig

ht
 le

ve
l

FIGURE 4.7: Air-Traffic Volume During the Collecting Period

altitude or flight level, as long as the information is available on the data. The aircraft

with flight level 5001 feet and above which have the information about their Latitude

and Longitude is 1502 of a unique Hex ID. As shown on the Figure 4.13, the scale

becomes smaller in proportion to the amount of information about the position of

the aircraft.

Chapter 4. Results and Discussion 33

FIGURE 4.8: Flight Level 1 With Latitude and Longitude

FIGURE 4.9: Flight Level 2 With Latitude and Longitude

FIGURE 4.10: Flight Level 3 With Latitude and Longitude

Chapter 4. Results and Discussion 34

FIGURE 4.11: Flight Level 4 With Latitude and Longitude

FIGURE 4.12: Flight Level 5 With Latitude and Longitude

FIGURE 4.13: Flight Level 6 With Latitude and Longitude

35

Chapter 5

Conclusions

5.1 Conclusions

An analysis has been done according to the objectives of this study. This data is

obtained using data from the accuracy level obtained from the ADS-B receiver as it

is.

The ADS-B data was able to collect using the low-cost ADS-B receiver system.

The stream parser could be the reason why the messages is not 100% filled with

complete information; the ADS-B receiver is only receiving the captured data which

then processed by the stream parser and be translated into a new structure of data.

The stream parser works as a compiler and translate into a new structure of data

which is making a stream parser is beyond this study purpose. From the collected

ADS-B data, the air-traffic volume can be visualized and determined from the mes-

sage that have been gathered using the ADS-B receiver system as it is.

5.1.1 Air-Traffic Volume by Analyzed the Number of Aircraft using Flight

Level

The altitude or flight level distribution reported that the most common altitude cat-

egory in which most aircraft fly is the altitude from 5001 feet and above. This can be

seen on Figure 4.6, that the lowest Number of aircraft that fly on altitude from 5001

feet and above is 1049. This proves that the aircraft that fly below 5000 feet has a

smaller result. The altitude or flight level that below 10,000 feet are either take off or

landing position.

5.1.2 Air-Traffic Volume by Analyzed the Direction of Aircraft using Lat-

itude and Longitude

The path-plot of latitude and longitude in Figure 4.13 shows a high volume of air

traffic. Based on Figure 4.13, there are also some aircraft that have reached the lati-

tude and longitude cross from Java island to Sumatra island. This also proved that

the ADS-B receiver receives a message up to 250 km in radius. At category Flight

Level 6, the flight path is spreading out more from the island since the altitude on

Flight Level 6 had no limit.

Chapter 5. Conclusions 36

5.2 Recommendations for Further Work

Because of the file size and many parameters of the collected ADS-B data, the re-

ceiver hardware that was used in this research has a thermal problem, especially

the RTL-SDR. Hence, better receiver hardware will improve the receiving process.

Therefore, parser with the better capability to decode all messages types and receive

the high data sizes are strongly recommended for further study and for a longer

time period. Better tools to process the big data in much more efficient way to par-

allel the computing of the big data that have a real-time air-traffic volume and tools

to generate the flight path based on the ADS-B messages are also recommended.

Other studies such as performance assessment is also possible with some im-

provement on both hardware and software in order to get a better, bigger, and more

complete data. An analyze on optimization of the receiver endurance with a better

system is highly recommended.

37

Appendix A

Function library for Flight Level or

Altitude Filtering

1 #!/usr/bin/env python

2 # coding: utf -8

3

4 # In[]:

5

6

7 import pandas as pd

8 import numpy as np

9 import sqlite3 as lite

10 import sys

11 import csv

12

13 database = "adsb_messages.db"

14 query = "SELECT * FROM squitters WHERE logged_date = "

15 jump = 1000

16

17 pd.options.mode.chained_assignment = None

18

19 def delete_empty(df2 ,var):

20 df2[var] = pd.to_numeric(df2[var], errors=’coerce ’)

21 df2[var]. replace(’’, np.nan , inplace=True)

22 df2 = df2.dropna(subset =[var], inplace=True)

23

24 def main():

25 #VARIABLE

26 low = 0

27 num = 1

28 total_count = 0

29 total_count1 = 0

30 total_count2 = 0

31 total_count3 = 0

32 total_count4 = 0

33 total_count5 = 0

34 total_count6 = 0

35 dataTotal = []

36

37 #Database Connect

Appendix A. Function library for Flight Level or Altitude Filtering 38

38 sd = lite.connect(database)

39

40 #Chunk Divided by date which the date that starts from the first

day collecting the data

41 date = [" ’2019/09/26 ’"," ’2019/09/27 ’"," ’2019/09/28 ’"," ’2019/09/29 ’"

," ’2019/09/30 ’"," ’2019/10/01 ’"," ’2019/10/02 ’"," ’2019/10/03 ’","

’2019/10/04 ’"," ’2019/10/05 ’"," ’2019/10/06 ’"," ’2019/10/07 ’","

’2019/10/08 ’"," ’2019/10/09 ’"," ’2019/10/10 ’"," ’2019/10/11 ’","

’2019/10/12 ’"," ’2019/10/13 ’"," ’2019/10/14 ’"," ’2019/10/15 ’","

’2019/10/16 ’"," ’2019/10/17 ’"," ’2019/10/18 ’"," ’2019/10/19 ’","

’2019/10/20 ’"," ’2019/10/21 ’"," ’2019/10/22 ’"," ’2019/10/23 ’","

’2019/10/24 ’"," ’2019/10/25 ’"," ’2019/10/26 ’"]

42 i = 0

43 while i < len(date):

44 query2 = query + date[i]

45 print(query2)

46 print(date[i])

47 df = pd.read_sql_query(query2 , sd)

48 print(df)

49 if df.empty == False:

50 #VARIABLE1

51 filename = str(num)

52 num = num + 1

53 df1 = df

54 start = 0

55 dataChunk = []

56

57 #For every hour

58 while start < 24:

59 #VARIABLE2

60 hex_count = 0

61 hex_count1 = 0

62 hex_count2 = 0

63 hex_count3 = 0

64 hex_count4 = 0

65 hex_count5 = 0

66 hex_count6 = 0

67 start_str = str(start) + ’:00’

68 end_str = str(start +1) + ’:00’

69

70 #Filtering process for each hour , that took from the

logged_time column

71 df2 = df1[df1[’logged_time ’]. between(start_str , end_str

)]

72

73 #Will Only Continue if the data is not empty

74 if df2.empty == False:

75 #Remove the empty altitude. The to_numeric process

is needed , because the altitude is having a dtype=object

76 df2[’altitude ’] = pd.to_numeric(df2[’altitude ’],

errors=’coerce ’)

77 print(df2)

Appendix A. Function library for Flight Level or Altitude Filtering 39

78 df2[’altitude ’]. replace ([’’,"NaN", ’NaT’], np.nan ,

inplace=True)

79 print(df2)

80

81 #If the data is not empty

82 if df2.empty == False:

83 df2.dropna(subset =[’altitude ’], inplace=True)

84 print(df2)

85

86

87 if df2.empty == False:

88 #VARIABLE3

89 high = int(df2[’altitude ’].max())

90 curr = int(low)

91

92 #Input to CSV. This CSV is only for each

chunk.

93 df2.to_csv(’Chunk’+filename+’.csv’, index=

False , header=True)

94

95 #Filtering with altitude range

96 df3 = df2[df2[’altitude ’]. between(0, 1000)]

97 if df3.empty == False:

98 print(df3)

99 print("1st Iteration (Flight Level 0 to

1000)")

100 print("Num. of Unique Hex: " + str(df3[

’hex_ident ’]. nunique ()))

101 print("Unique Hex: " + str(df3[’

hex_ident ’]. unique ()))

102 print("

---")

103

104 #For the unique hex count

105 hex_count1 = df3[’hex_ident ’]. nunique ()

106 total_count1 = total_count1 +

hex_count1

107

108 df3 = df2[df2[’altitude ’]. between (1001,

2000)]

109 if df3.empty == False:

110 print(df3)

111 print("2n Iteration (Flight Level 1001

to 2000)")

112 print("Num. of Unique Hex: " + str(df3[

’hex_ident ’]. nunique ()))

113 print("Unique Hex: " + str(df3[’

hex_ident ’]. unique ()))

114 print("

---")

115 hex_count2 = df3[’hex_ident ’]. nunique ()

Appendix A. Function library for Flight Level or Altitude Filtering 40

116 total_count2 = total_count2 +

hex_count2

117

118 df3 = df2[df2[’altitude ’]. between (2001,

3000)]

119 if df3.empty == False:

120 print(df3)

121 print("3rd Iteration (Flight Level 2001

to 3000)")

122 print("Num. of Unique Hex: " + str(df3[

’hex_ident ’]. nunique ()))

123 print("Unique Hex: " + str(df3[’

hex_ident ’]. unique ()))

124 print("

---")

125 hex_count3 = df3[’hex_ident ’]. nunique ()

126 total_count3 = total_count3 +

hex_count3

127

128 df3 = df2[df2[’altitude ’]. between (3001,

4000)]

129 if df3.empty == False:

130 print(df3)

131 print("4th Iteration (Flight Level 3001

to 4000)")

132 print("Num. of Unique Hex: " + str(df3[

’hex_ident ’]. nunique ()))

133 print("Unique Hex: " + str(df3[’

hex_ident ’]. unique ()))

134 print("

---")

135 hex_count4 = df3[’hex_ident ’]. nunique ()

136 total_count4 = total_count4 +

hex_count4

137

138 df3 = df2[df2[’altitude ’]. between (4001 ,

5000)]

139 if df3.empty == False:

140 print(df3)

141 print("5th Iteration (Flight Level 4001

to 5000)")

142 print("Num. of Unique Hex: " + str(df3[

’hex_ident ’]. nunique ()))

143 print("Unique Hex: " + str(df3[’

hex_ident ’]. unique ()))

144 print("

---")

145 hex_count5 = df3[’hex_ident ’]. nunique ()

146 total_count5 = total_count5 +

hex_count5

147

Appendix A. Function library for Flight Level or Altitude Filtering 41

148 df3 = df2[df2[’altitude ’]. between (5001,

high)]

149 if df3.empty == False:

150 #df3.to_csv(’Chunk ’+filename+’-FL4.csv

’, index=False , header=True)

151 print(df3)

152 print("6th Iteration (Flight Level 5001

to " + str(high) + ")")

153 print("Num. of Unique Hex: " + str(df3[

’hex_ident ’]. nunique ()))

154 print("Unique Hex: " + str(df3[’

hex_ident ’]. unique ()))

155 print("

---")

156 hex_count6 = df3[’hex_ident ’]. nunique ()

157 total_count6 = total_count6 +

hex_count6

158 #VARIABLE4

159 start = start + 1

160 hex_count = hex_count1 + hex_count2 + hex_count3 +

hex_count4 + hex_count5 + hex_count6

161 total_count = total_count1 + total_count2 +

total_count3 + total_count4 + total_count5 + total_count6

162 time = start_str + " - " + end_str

163

164 #Into list process with append.

165 temp = [time ,hex_count1 ,hex_count2 ,hex_count3 ,

hex_count4 ,hex_count5 ,hex_count6 ,hex_count]

166 dataChunk.append(temp)

167 total_temp = [time ,total_count1 ,total_count2 ,

total_count3 ,total_count4 ,total_count5 ,total_count6 ,total_count]

168 dataTotal.append(total_temp)

169

170 #Into the CSV which divided by the Flight Level

171 df4 = pd.DataFrame(dataChunk , columns = [’Time’, ’

0-1000’, ’1001 -2000’, ’2001 -3000’, ’3001 -4000’, ’4001 -5000’, ’5001+

’, ’Count ’])

172 df4.to_csv(str(i)+’-Count.csv’, index=False , header=

True)

173

174 i = i + 1

175 df5 = pd.DataFrame(dataTotal , columns = [’Time’, ’0-1000’, ’

1001 -2000’, ’2001 -3000’, ’3001 -4000’, ’4001 -5000’, ’5001+’, ’Count

’])

176 df5.to_csv(’TotalCount.csv’, index=False , header=True)

177

178 if __name__ == "__main__":

179 main()

180

181 # Plotting the graph

182

183 import numpy as np

Appendix A. Function library for Flight Level or Altitude Filtering 42

184 import matplotlib.pyplot as plt

185 from matplotlib.dates import strpdate2num , num2date , datestr2num

186 import matplotlib.dates as mdates

187 plt.style.use(’ggplot ’)

188 import datetime

189

190 def convert_date(date_bytes):

191 return mdates.strpdate2num(’%m/%d/%Y’)(date_bytes.decode(’ascii ’))

192

193

194 data = np.genfromtxt("Data_Number_Airplanes_Gede.csv", skip_header =1,

converters = {0: convert_date}, delimiter=";")

195

196 avg_fl_1 = np.average(data[:, 1])

197 avg_fl_2 = np.average(data[:, 2])

198 avg_fl_3 = np.average(data[:, 3])

199 avg_fl_4 = np.average(data[:, 4])

200 avg_fl_5 = np.average(data[:, 5])

201 avg_fl_6 = np.average(data[:, 6])

202

203

204 sd_fl_1 = np.std(data[:, 1])

205 sd_fl_2 = np.std(data[:, 2])

206 sd_fl_3 = np.std(data[:, 3])

207 sd_fl_4 = np.std(data[:, 4])

208 sd_fl_5 = np.std(data[:, 5])

209 sd_fl_6 = np.std(data[:, 6])

210

211

212 FLs = [’FL1’, ’FL2’, ’FL3’, ’FL4’, ’FL5’, ’FL6’]

213 x_pos = np.arange(len(FLs))

214 avgs = np.array([avg_fl_1 , avg_fl_2 , avg_fl_3 , avg_fl_4 , avg_fl_5 ,

avg_fl_6])

215 sds = np.array([sd_fl_1 , sd_fl_2 , sd_fl_3 , sd_fl_4 , sd_fl_5 , sd_fl_6])

216

217

218 # Average and standard deviation plot

219 fig , ax = plt.subplots ()

220 ax.bar(x_pos , avgs , yerr=sds , align=’center ’, alpha =0.5, ecolor=’black’

, capsize =10)

221 ax.set_ylabel(’Average number of aircraft in flight level ’)

222 ax.set_xticks(x_pos)

223 ax.set_xticklabels(FLs)

224 ax.yaxis.grid(True)

225

226

227 # fig , ax = plt.subplots ()

228 # ax.plot_date(data[:, 0], data[:, 6], ’o--’)

229 # fig.autofmt_xdate ()

230

231 # ax.fmt_xdata = mdates.DateFormatter (’%Y-%m-%d ’)

232

Appendix A. Function library for Flight Level or Altitude Filtering 43

233 # ax.set_xlabel ("Day")

234 # ax.set_ylabel (" Number of Aircraft ")

235

236 # plt.savefig ("FL6.pdf", dpi=600, bbox_inches=’tight ’)

237

238 plt.savefig("avg_sds.pdf", dpi=600, bbox_inches=’tight’)

239

240

241 plt.show()

44

Appendix B

Function library for Latitude and

Longitude Filtering

1 #!/usr/bin/env python

2 # coding: utf -8

3

4 # In[]:

5

6

7 import pandas as pd

8 import numpy as np

9 import sqlite3 as lite

10 from mpl_toolkits.basemap import Basemap

11 import matplotlib.pyplot as plt

12 import csv

13 from matplotlib_scalebar.scalebar import ScaleBar

14 import matplotlib.pyplot as plt

15 import matplotlib.cbook as cbook

16

17 #1st connect to the database file. The database file has to be in the

file directory in the computer.

18 sd = lite.connect(’adsb_messages.db’)

19

20 #Read the file into chunk , in this case , the chunk didn’t neet to be

divided by date. Chunksize is enough.

21 for chunk in pd.read_sql_query("SELECT hex_ident , logged_date , altitude

, lat , lon FROM squitters", sd, chunksize =1000000):

22 chunk[’lat’]. replace(’’,np.nan ,inplace=True)

23 chunk.dropna(subset =[’lat’],inplace=True)

24 dataChunk.to_csv(’file_name1.csv’, mode=’a’)

25 #Save into new csv

26 #--

27 #Read the new csv

28 df = pd.read_csv(’filtered.csv’)

29

30 #Turn the altitude data type from object to float46 , so the altitude

can be filter using between method.

31 df[’altitude ’] = pd.to_numeric(df[’altitude ’], errors=’coerce ’)

32

33 #filter using between method

Appendix B. Function library for Latitude and Longitude Filtering 45

34 FL1 = df[df[’altitude ’]. between (0 ,1000)] #the number in between bracket

need to be change every Flight Level.

35 FL1.to_csv(’file_name2.csv’)

36 #save into new csv2

37 #saving into csv after every filtration is to prevent the missing data

after filtration.

38 #--

39 #read the new csv2

40 sd = pd.read_csv(’file_name2.csv’)

41

42 #the ’lon’ can be change into ’lat ’. Also the number ’111’ change

depend on the limitation

43 sd = sd[(sd[’lon’] <= 111) | (sd[’lon’]. isnull ())]

44

45 sd.to_csv(’file_name3.csv’)

46 #save into csv3

47 #--

48 #PLOTTING WITH BASEMAP

49

50 lats , lons ,names ,altitude = [],[],[],[]

51

52 # the asos_stations file can be found here:

53 # https :// engineersportal.com/s/asos_stations.csv

54 with open(’FixFL1.csv’) as csvfile:

55 reader = csv.DictReader(csvfile ,delimiter=’,’)

56 for data in reader:

57 names.append(data[’hex_ident ’])

58 lats.append(float(data[’lat’]))

59 lons.append(float(data[’lon’]))

60 altitude.append(float(data[’altitude ’]))

61

62 # How much to zoom from coordinates (in degrees)

63 zoom_scale = 3

64

65 # Setup the bounding box for the zoom and bounds of the map

66 bbox = [np.min(lats)-zoom_scale ,np.max(lats)+zoom_scale , np.min(

lons)-zoom_scale ,np.max(lons)+zoom_scale]

67

68 plt.figure(figsize =(12 ,6))

69 # Define the projection , scale , the corners of the map , and the

resolution.

70 m = Basemap(projection=’merc’,llcrnrlat=bbox[0], urcrnrlat=bbox[1],

llcrnrlon=bbox[2], urcrnrlon=bbox[3], lat_ts =10, resolution=’i’

)

71

72 # Draw coastlines and fill continents and water with color

73 m.drawcoastlines ()

74 m.fillcontinents(color=’peru’,lake_color=’dodgerblue ’)

75

76 #m.drawmapscale(lon ,lat , lon0 , lat0 ,length ,barstyle)

77 m.drawmapscale (108. , -9., -3.25, .5, 500, barstyle=’fancy’)

78 #m.drawmapscale(lon ,lat , lon0 , lat0 ,length ,fontsize)

Appendix B. Function library for Latitude and Longitude Filtering 46

79 #m.drawmapscale (108. , -9, -3.25, 39.5, 500, fontsize = 14)

80

81 # draw parallels , meridians , and color boundaries

82 m.drawparallels(np.arange(bbox[0],bbox [1],(bbox[1]-bbox [0]) /5),labels

=[1,0,0,0])

83 m.drawmeridians(np.arange(bbox[2],bbox [3],(bbox[3]-bbox [2]) /5),labels

=[0,0,0,1], rotation =45)

84 m.drawmapboundary(fill_color=’dodgerblue ’)

85

86 # build and plot coordinates onto map

87 x,y = m(lons ,lats)

88 m.plot(x,y,’r*’,markersize =5)

89 #plt.title ("")

90 plt.savefig(’FixFL1scale.pdf’, format=’pdf’, dpi =600)

91 plt.show()

47

Bibliography

[1] “Air Traffic Analysis”. In: (2012). URL: http : / / geoanalytics . net / and /

papers/mobibook13a.pdf//// (visited on 12/20/2019).

[2] “An Approach to Air Traffic Density Estimation and Its Application in Aircraft

Trajectory Planning”. In: (2012). URL: https://engineering.purdue.edu/

~jianghai/Publication/CCDC2012_ATC.pdf//// (visited on 05/24/2012).

[3] “Kalahkan Changi, Penerbangan di Soetta Setiap 66 Detik”. In: (2018). URL:

https://www.cnbcindonesia.com/news/20180427113940-4-12750/kalahkan-

changi-penerbangan-di-soetta-setiap-66-detik////.

[4] “COMPARISON OF SURVEILLANCE TECHNOLOGIES”. In: (2010). URL: http:

//geoanalytics.net/and/papers/mobibook13a.pdf//// (visited on 12/10/2010).

[5] “Preliminary Study on Air Traffic Density of Peninsular Malaysia using Visual

Flight Path Trajectories from Automatic Dependent Surveillance-Broadcast (ADS-

B) Data”. In: (2018). URL: https://www.sciencepubco.com/index.php/ijet/

article/view/22238//// (visited on 04/25/2018).

[6] “Air Traffic Volume and Air Traffic Control Human Errors”. In: (2011). URL:

https://www.scirp.org/pdf/JTTs20110300005_65685953.pdf//// (visited

on 05/22/2011).

[7] Raspberry Pi ADS-B Base Station for OpenSky Network. 2017. URL: https : / /

github.com/openskynetwork/raspberry-pi-adsb//// (visited on 09/16/2017).

[8] Introduction to ADS-B. 2016. URL: https://www.trig-avionics.com/knowledge-

bank/ads-b/introduction-to-ads-b// (visited on 09/10/2019).

[9] Automatic Dependent Surveillance Broadcast (ADS-B). 2019. URL: https://www.

skybrary.aero/index.php/Automatic_Dependent_Surveillance_Broadcast_

(ADS-B)// (visited on 10/09/2019).

[10] What are the ADS-B rules. 2019. URL: https://www.faa.gov/nextgen/equipadsb/

resources/faq//// (visited on 09/25/2019).

[11] AUTOMATIC DEPENDENT SURVEILLANCE BROADCAST (ADS-B) IMPLE-

MENTATION IN INDONESIA. 2017. URL: https://ops.group/blog/wp-

content/uploads/2018/02/indon_1817.pdf//// (visited on 05/25/2017).

[12] How ADS-B works. 2015. URL: http : / / www . airservicesaustralia . com /

projects/ads-b/how-ads-b-works/// (visited on 09/18/2015).

http://geoanalytics.net/and/papers/mobibook13a.pdf////
http://geoanalytics.net/and/papers/mobibook13a.pdf////
https://engineering.purdue.edu/~jianghai/Publication/CCDC2012_ATC.pdf////
https://engineering.purdue.edu/~jianghai/Publication/CCDC2012_ATC.pdf////
https://www.cnbcindonesia.com/news/20180427113940-4-12750/kalahkan-changi-penerbangan-di-soetta-setiap-66-detik////
https://www.cnbcindonesia.com/news/20180427113940-4-12750/kalahkan-changi-penerbangan-di-soetta-setiap-66-detik////
http://geoanalytics.net/and/papers/mobibook13a.pdf////
http://geoanalytics.net/and/papers/mobibook13a.pdf////
https://www.sciencepubco.com/index.php/ijet/article/view/22238////
https://www.sciencepubco.com/index.php/ijet/article/view/22238////
https://www.scirp.org/pdf/JTTs20110300005_65685953.pdf////
https://github.com/openskynetwork/raspberry-pi-adsb////
https://github.com/openskynetwork/raspberry-pi-adsb////
https://www.trig-avionics.com/knowledge-bank/ads-b/introduction-to-ads-b//
https://www.trig-avionics.com/knowledge-bank/ads-b/introduction-to-ads-b//
https://www.skybrary.aero/index.php/Automatic_Dependent_Surveillance_Broadcast_(ADS-B)//
https://www.skybrary.aero/index.php/Automatic_Dependent_Surveillance_Broadcast_(ADS-B)//
https://www.skybrary.aero/index.php/Automatic_Dependent_Surveillance_Broadcast_(ADS-B)//
https://www.faa.gov/nextgen/equipadsb/resources/faq////
https://www.faa.gov/nextgen/equipadsb/resources/faq////
https://ops.group/blog/wp-content/uploads/2018/02/indon_1817.pdf////
https://ops.group/blog/wp-content/uploads/2018/02/indon_1817.pdf////
http://www.airservicesaustralia.com/projects/ads-b/how-ads-b-works///
http://www.airservicesaustralia.com/projects/ads-b/how-ads-b-works///

Bibliography 48

[13] FAA Announces Automatic Dependent Surveillance-Broadcast Architecture. 2012.

URL: https://web.archive.org/web/20121022201516/http://www.faa.

gov/news/press_releases/news_story.cfm?newsId=5520&print=go////

(visited on 10/22/2012).

[14] Socket Data and BST files. 2019. URL: http://woodair.net/sbs/article/

barebones42_socket_data.htm//// (visited on 10/11/2019).

[15] dump1090 stream parser. 2018. URL: https://github.com/yanofsky/dump1090-

stream-parser//// (visited on 10/23/2017).

[16] “Section 3. Wake Turbulence”. In: (2009). URL: https://web.archive.org/

web/20090905114743/http://www.faa.gov/air_traffic/publications/

ATpubs/AIM/Chap7/aim0703.html//// (visited on 09/05/2009).

https://web.archive.org/web/20121022201516/http://www.faa.gov/news/press_releases/news_story.cfm?newsId=5520&print=go////
https://web.archive.org/web/20121022201516/http://www.faa.gov/news/press_releases/news_story.cfm?newsId=5520&print=go////
http://woodair.net/sbs/article/barebones42_socket_data.htm////
http://woodair.net/sbs/article/barebones42_socket_data.htm////
https://github.com/yanofsky/dump1090-stream-parser////
https://github.com/yanofsky/dump1090-stream-parser////
https://web.archive.org/web/20090905114743/http://www.faa.gov/air_traffic/publications/ATpubs/AIM/Chap7/aim0703.html////
https://web.archive.org/web/20090905114743/http://www.faa.gov/air_traffic/publications/ATpubs/AIM/Chap7/aim0703.html////
https://web.archive.org/web/20090905114743/http://www.faa.gov/air_traffic/publications/ATpubs/AIM/Chap7/aim0703.html////

	Abstract
	Statement by The Author
	Committee Approval
	Acknowledgements
	Introduction
	Introduction
	Background
	ADS-B Messages
	ADS-B Receiver

	Problem Statement
	Research Purpose
	Research Scope
	Research Approach

	Literature Review
	Air-Traffic Density
	Automatic Dependent Surveillance Broadcast
	How ADS-B Technology was Introduced
	Implementation Of ADS-B
	How ADS-B Work
	ADS-B Receiver
	ADS-B Transmitter

	ADS-B Receiver Kit
	ADS-B Raspberry-Pi Receiver
	ADS-B Message

	Dump1090 Stream Parser
	SQLite Database

	Research Methodology
	Assembling The ADS-B Raspberry-Pi System
	Setting up the Raspberry-Pi
	Setting up the RTL-SDR and Dump1090

	Placing The Antenna
	Preparing Raspberry-Pi ADS-B Box
	Setting up the Stream Parser
	Processing the Data
	Air-Traffic Volume Analysis
	Air-Traffic Volume Analysis based on Flight Level
	Air-Traffic Volume Analysis based on Latitude and Longitude

	Results and Discussion
	Obtained Data
	Number of Flights Based on ADS-B data
	Air Traffic Based on Flight Level
	Flight Level from 0 to 1000 feet
	Flight Level from 1001 to 2000 feet
	Flight Level from 2001 to 3000 feet
	Flight Level from 3001 to 4000 feet
	Flight Level from 4001 to 5000 feet
	Flight Level from 5001 feet and above

	Air Traffic Based on Latitude and Longitude
	Flight Level from 0 to 1000 feet
	Flight Level from 1001 to 2000 feet
	Flight Level from 2001 to 3000 feet
	Flight Level from 3001 to 4000 feet
	Flight Level from 4001 to 5000 feet
	Flight Level from 5001 feet and above

	Conclusions
	Conclusions
	Air-Traffic Volume by Analyzed the Number of Aircraft using Flight Level
	Air-Traffic Volume by Analyzed the Direction of Aircraft using Latitude and Longitude

	Recommendations for Further Work

	Function library for Flight Level or Altitude Filtering
	Function library for Latitude and Longitude Filtering
	Bibliography

