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ABSTRACT

Numerical Investigation of Moments of Inertia’s Uncertainty Effects on LAPAN

RX-200C Rocket

by

Faisal Tri Mulyawan

Triwanto Simanjuntak, PhD, Advisor

In this thesis the sensitivity analysis of LAPAN RX-200C rocket under moments of

inertia’s uncertainties (Ixx, Iyy, and Izz) is investigated. The Monte Carlo method is

performed to reveal patterns arising from the variations in the moments of inertia.

The dynamical modeling and simulations are done in MATLAB and Simulink

while the aerodynamic coefficients are generated using DATCOM. Two types of

normally distributed moments of inertia’s uncertainty, constant and noise, will be

considered. To isolate their individual influences, only one of moments of inertia

will be exposed to uncertainty at each run. A step sidewind disturbance will also

be applied to the system to induce lateral-directional motions. Nonparametric

kernel density estimation and parametric normal distribution approximation will

be utilized to interpret the impact point results. The stability of the rocket will

also be observed briefly through its angle of attack and sideslip angle trajectories.

The results show that the moments of inertia uncertainty produce various spread

characteristics with Ixx having the largest spread influence in the impact points

relative to the rest of the moments of inertia. The results also show that Iyy and Izz

uncertainties produce similar indicators’ distribution. Further, the constant-type

uncertainty will create larger indicators’ spread when compared to the noise-type

uncertainty. The maximum indicators’ spread occurs with the constant, 10% Ixx

uncertainty and 3 m/s wind disturbance; 34 m, 123 m , and 53 m for final x, final

y, and maximum altitude, respectively. Under uncertainty, the rocket is able to

maintain zero angle of attack while minimizing sideslip angle in the range of -1 deg

and +1 deg. Keyword: Ballistic Rocket, Monte Carlo, Moments of Inertia
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CHAPTER 1

INTRODUCTION

1.1 Background

Figure 1.1: German V-2 rocket unveiled the offensive prowess of
rocket technology to the world during the World War II (Marx,

2014).

The origin of rocketry can be traced back as far as the 11th century with

the growing usage of gunpowder in modern-day China. The primordial rockets

were mainly in the form of fireworks and fire arrows. Ever since then, humans

have been trying to conceptualize and invent more advanced rockets. In this day

and age, rocket technology has been enabling humanity to expand its frontier to

outer space; from bringing communication satellites into orbit, deploying probes

to other celestial bodies, and even sending humans to space. For the military,
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rocket technology has undoubtedly a great potential for both offensive and defensive

ends. Fig. 1.1, shows German V-2 rocket unveiled the offensive prowess of rocket

technology to the world during World War II. This was also a prototype adopted

by Von Braun to develop the US space program.

Figure 1.2: Soyuz-FG rocket with Soyuz TMA spacecraft (Ingalls,
2006).

Recent and upcoming interest and progress of rocket developments are driven

by space-related activities. One of these activities is to bring more humans out to

space. NASA and SpaceX are determined to bring humans to the Moon and Mars

which requires them to develop larger and more powerful rockets. Amazon’s Jeff

Bezos and Sir Richard Branson have recently been the first ”space tourists” with

their own spacecraft. SpaceX has safely launched and brought back civilians to the

Earth’s orbit for around 3 days with its Falcon 9 and Dragon spacecraft.

With the growing interest in smart devices that are based on the internet of

things (IoT), the demands for companies to have their own satellites have sky-

rocketed. Add to that the increase of satellite technology which cut development

costs while also improving reliability, the satellite market has now become a very

appealing opportunity for investors.

The launch vehicle market will have to fill the increased number of launch

demands. By 2027, the launch market is expected to be valued at $26 billion

(Bloomberg, 2022) while the whole space industry market is projected to be valued
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Figure 1.3: Comparison of active launch vehicle families
(Wikipedia, 2021).

at $1 trillion by 2040 (NYTimes, 2022). Investors are racing and preparing to take

their piece of the space industry market. This is reflected by the appearance of

more launch vehicle start-ups. For investors, the main attractive points of these

launch vehicle startups are:

• Reliability: due to improvement in rocket technology and manufacturing;

• Reusability: providing cost efficiency;

• Availability: providing flexibility to their customers.

Interestingly, these start-ups are mainly targeting the small launch vehicle mar-

ket. The small launch vehicle market is especially appealing due to ”Bus vs Taxi”

analogy:

• Not everyone needs large rockets to put their (small) products in space;

• Some companies need their product to be launched as soon as possible;

• Hitch-riding large rockets are ill-suited for unique missions.
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Figure 1.4: Comparison of launch vehicle families currently in
development (Comparison of orbital launch systems - Wikipedia,

2022).

These companies have their own jargon in describing their rockets. Phantom

Space is taking advantage of an improved supply chain and economies of scale

to be a rocket ”integrator” rather than a one-manufacturing-all rocket company

(MITTR, 2022). Phantom space is also trying to make its own satellite design

solutions. Rocket Lab has shown its capability in its reusable small launch vehicle

with its Electron rocket. To improve reliability, Relativity Space is reducing the

number of parts needed by 3D printing its rocket (Company, 2022).

1.2 LAPAN Rocket Program

Indonesia, through its National Institute of Aeronautics and Space (LAPAN), has

been developing its own rockets as well. Rocket development by LAPAN is divided

into 4 focuses (Pusat Teknologi Roket , 2022b):

1. EDF/TJ Rocket
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Figure 1.5: Artist’s rendition of Rocketlab’s Electron booster re-
covery using parachute (Flight, 2019).

The main objective of the EDF/TJ Rocket program is the development and

testing of experimental control systems designed by LAPAN. The rocket in

interest is powered either by using an electric ducted fan (EDF) or a turbojet

engine (TJ).

Figure 1.6: RKX-200 TJ rocket.

2. Sounding Rocket

LAPAN sounding rocket program aims to enable atmospheric studies for

Indonesian researchers. The most recent progress is the ballistic test launch of

the RX-450-5 sounding rocket on 2 December 2020 in Pameungpeuk, Garut.

It achieved 80 km downrange with 70-degree initial pitch. RX-450 rocket

is projected to be the baseline rocket for future LAPAN guided, multi-stage

sounding rocket/satellite orbiter projects.

3. Liquid-propellant Rocket
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Figure 1.7: RX-450-5 rocket.

LAPAN is currently developing its own liquid-fuel rocket engine. A liquid fuel

engine is advantageous to a solid fuel engine as it provides more efficiency. As

opposed to its solid fuel counterpart, A liquid fuel engine’s fuel flow can also

be regulated which in turn enable the engineer to control the rocket’s thrust.

However, this also means that a liquid fuel engine introduces more complexity

to the system by i.e. requiring turbomachinery and separate storage for its

fuel and oxidizer.

(a) (b) (c)

Figure 1.8: LAPAN liquid fuel engines: (a)ECX1000H1;
(b)ECX1000H2 (c)ECX2000H1.

4. Launch Vehicle

For its biggest plan, LAPAN is trying to build its own satellite launch vehicle

by the year 2039. For this purpose, the development of a multi-stage rocket
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needed for an orbital flight has commenced by the development of the RX-

450 rocket family. As the next step, the RX-450 rocket will be fitted with a

first-stage rocket booster in addition to a stage separation capability.

Figure 1.9: LAPAN RPS plan.

1.3 Uncertainty Threats on Rocket Performance

With increasing demand in the launch vehicle market, so does the demand for a

more accurate rocket model. In general, problems encountered by a launch vehicle

can be traced down to:

• Nonlinearity;

• Model uncertainty;

• Environment uncertainty;

• Trajectory dispersions;

• Non-minimum phase systems;

• Actuator failures.
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From all of the sources mentioned above, model uncertainty comes as the most

physical aspect that comes with rocket manufacturing. One of the hardest prop-

erties to accurately measure is the moment of inertia of the rocket. The most

straightforward way is to use computer-aided software where engineers input the

geometry and mass properties of each rocket part. However, this might not take

into account the imperfection in manufacturing. Small variations in one parame-

ter could lead to large trajectory or stability deviations due to the complex and

nonlinear couplings of a rocket.

A Monte Carlo simulation can be employed to address this type of problem. A

Monte Carlo simulation works well with naturally probabilistic problems that are

too difficult to solve analytically. With this method, any influences of uncertainties

in the rocket design can be recognized by analyzing the trajectory patterns and

dispersions. In this case, the uncertainty in each of the moments of inertia can be

isolated and the significance of each uncertainty can act as feedback and baseline

to develop more accurate manufacturing methods.

1.4 Problem Statement

The key problems in this thesis are:

• The individual effects from each of the moments of inertia’s uncertainty;

• The distribution of the impact points under moments of inertia’s uncertain-

ties;

• The stability of the rocket under moments of inertia’s uncertainties;

• The comparison between Monte Carlo simulations with a small and large

number of runs.

1.5 Research Objectives

The objectives to be achieved in this thesis are:

• To determine which of the moments of inertia’s uncertainties gives the largest

influence on the rocket’s dynamics;
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• To identify patterns in the impact points due to moments of inertia’s uncer-

tainties;

• To assess the rocket’s stability under moments of inertia’s uncertainties;

• To investigate the optimal number of Monte Carlo iterations.

1.6 Research Scope and Limitation

In this thesis, it is assumed that:

• The rocket and its motor is assumed to be perfectly symmetrical (by mass

and shape);

• The effects of the Earth’s rotation, curvature, and mass distribution are ne-

glected;

• The simulation will not consider the rocket’s structural integrity.

• The moments of inertia’s uncertainty are normally distributed.

This thesis is limited to:

• Only maximum range, maximum altitude, final impact coordinates, angle of

attack, and sideslip angle will be used as the indicators;

• Numerical nature of the research exposes the results to numerical errors,

idealizations, and limitations;

• The results may only be valid for the RX-200C rocket.

1.7 Significance of the Study

The results of this thesis can provide useful insight into the effects of imperfections

in the manufacturing of LAPAN’s solid propellant design. This thesis can also act

as a reference model for a controller that addresses moments of inertia uncertainties.

Additionally, tools developed during this thesis such as interfaces between multiple

applications and the rocket modeling structure paradigm can be used for LAPAN

future rocket projects.
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CHAPTER 2

LITERATURE REVIEW

2.1 The Earth’s Atmosphere

The earth’s atmosphere is a mixture of gases that we commonly call ”air”. These

gases blanket the earth due to gravity. The atmosphere mainly consists of N2

(78.1%), O2 (20.9%), Ar (0.9%), and CO2 (0.03%). Its physical properties such

as pressure, temperature, and density change with position, time, and celestial

bodies’ influences. In addition to the oxygen that it provides, the atmosphere also

shields living creatures on earth against radiation and radio waves from space. For

our purpose, the atmosphere’s influence on an aerospace vehicle plays a significant

role in the vehicle’s structural integrity and flight dynamics through aerodynamics.

Therefore, a proper understanding of the atmosphere will dictate the outcome of a

mission.224 9 Planetary Atmosphere

11 470 86 500

Fig. 9.2. The distinct atmospheric strata.

magnetic field. The exospheric temperature is usually considered constant,
but its value varies wildly between different models.

Before considering a specific model, let us derive the basic atmospheric
variables in the layers having thermodynamic equilibrium. The linear vari-
ation of the temperature with the altitude in such a layer is expressed as
follows:

T = Ti + a(h − hi) , (9.11)

where the subscript i refers to the quantities at the base of the layer, and a is
a constant called the thermal lapse rate. By substituting Eqs. (9.3) and (9.5)
into Eq. (9.7), we have

a
.=

dT

dh
= − (n − 1)

n

g

R
, (9.12)

which directly relates the lapse rate to the ploytropic exponent. The lapse
rate is crucial in determining the stability of the hydrostatic equilibrium of
an atmospheric layer. A negative lapse rate implies a cooling-off of warm air
as it rises due to a small thermal disturbance from the equilibrium condition,
thereby causing the given air volume to become heavier and to descend back
to its equilibrium level. Therefore, an atmospheric layer with a < 0 is ther-
mally stable, and those with a > 0 are unstable. Whenever strong thermal
gradients are established due to local convective activity in the troposphere,
the prevailing negative lapse rate may become inverted, causing a tempera-
ture inversion and the formation of vertical air currents in the resulting locally
unstable region.

Figure 2.1: Atmospheric layers (Tewari, 2007).
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The atmosphere can be divided into several layers as shown in Fig. 2.1. The

first layer, the troposphere, starts from the sea-level altitude up to 11 km of alti-

tude. This is the layer where wind gusts, turbulence, and weather as we know it

occurs. The troposphere contains 80% of the earth’s atmosphere by mass which

makes it the thickest atmospheric layer. Starting from 11 km to 47 km of altitude

is the stratosphere. In this layer, the wind profile is calmer but faster. Here, the

temperature increases due to a high concentration of ozone absorbing solar radi-

ation. The next layer is the mesosphere which ranges from 47 km to 86 km of

altitude. The temperature in this layer decreases with a diminishing number of

ozone in higher altitudes. This layer is also the starting point of another layer, the

ionosphere, where free electrons and charged particles exist due to solar radiation

and low particle density. The thermosphere is the next atmospheric layer. Starting

from 90 km to 500 km of altitude, solar activity commences to greatly influence the

atmospheric properties in the thermosphere region. Finally, the last layer is the

exosphere where particles can escape the earth into space. The exosphere starts

from 500 km and spans indefinitely into outer space.

Adding time variations to the diversity of the atmospheric layers makes pre-

dicting atmospheric properties a more challenging task. Atmospheric data is still

nonetheless needed as a reference for various calculations involving atmospheric

effects. To fill this demand, a standard model was created. The standard atmo-

sphere bases its calculation of the atmospheric properties using the hydrostatic

equation, temperature lapse rate data, and perfect gas equation. The results of the

calculation are the atmospheric properties as a function of geopotential altitude.

The variation of atmospheric properties based on COESA 1976 (U.S. Standard

Atmosphere, 1976 , 1976) is given in Fig. 2.2.

2.2 Gravity

For thousands of years, mankind has noticed that falling objects seem to be pulled

towards the earth. This phenomenon is famously called the gravity of the earth.

Isaac Newton then formalized this statement by saying that the immense mass of

the Earth is the source of its gravity and that gravity can also be generalized for

other celestial bodies. Assuming a completely spherical and homogenous Earth,
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Figure 2.2: COESA 1976 derived atmospheric properties as a
function of geopotential altitude H.
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Newton’s law of gravitation can mathematically describe the Earth’s gravitational

acceleration as

g =
GM

(h+ re)
2 (2.1)

where

• g ≜ Earth’s gravitational acceleration;

• G ≜ Earth’s gravitational constant;

• M ≜ Earth’s mass;

• h ≜ The rocket’s geometric altitude;

• re ≜ Earth’s radius.

Figure Fig. 2.3 shows the gravitational acceleration values calculated using Eq.

2.1.
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Figure 2.3: Newtonian gravitational acceleration up to 20 km
altitude.
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2.3 Equations of Motion

In classical mechanics, the motion of a rocket can be quantitatively described by

a set of differential equations that are derived from Newton’s laws (dynamical

equations) and motion kinematics. In total, there will be 4 sets of equations; force

equations, moment equations, translational and rotational kinematics equations;

which will correspond to 12 scalar equations.

2.3.1 Reference Frames and Coordinate System

A reference frame defines the relative directions in space through its axes and

unit vectors while the corresponding coordinate system quantitatively describes

the position of the particles of interest. Newton’s laws are only valid for observers

in a special frame called the inertial frame which is commonly known as a frame

that does not accelerate and/or rotate. As a consequence of taking the Earth as

an inertial frame, the Earth is assumed to be non-rotating.

Two additional reference frames are going to be introduced; the local horizontal

frame and the body frame. A local horizontal frame is a copy of the inertial

frame whose origin is translated to the rocket’s center of gravity. Thus, the local

horizontal frame shares the same unit vectors with the inertial frame. A body

frame is a frame whose origin is fixed to the rocket’s center of gravity with its

orientation following the rocket’s attitude. The relationship between the inertial

and body reference frame is shown in Fig. 2.4.

By convention, the directions of the axes in the inertial frame (xi, yi, zi) follow

the North-East-down system. For the body frame, the axes (xb, yb, zb) follow the

forward-right-down system. To simplify the relationship of the rocket’s position

and attitude between the body and the inertial frame, the Earth will be assumed

to be flat. A flat-Earth non-rotating inertial frame is an acceptable assumption for

a relatively short distance and short-duration flight (Jenkins, 1984).

A cartesian coordinate system is chosen to quantitatively measure the rocket’s

position along with Euler angles to describe the rocket’s attitude. With respect to

the inertial frame, the rocket’s attitude can be decomposed into three Euler angles:

roll angle (ϕ), pitch angle (θ), and yaw angle (ψ). Additionally, the angle of attack
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Figure 2.4: Relationships between the inertial frame and body
frame using Euler angles.

α and the sideslip angle β define the rocket’s velocity relative to the freestream

atmosphere in the body axis. These angles are mathematically expressed as

α = arctan
(w
u

)
β = arcsin

( v
V

) (2.2)

with uv
w

 =

usvs
ws

+

uwvw
ww

 (2.3)

or in vector forms

V = Vs +Vw (2.4)

where

• V ≜ Freestream velocity in body frame;

• Vs ≜ Rocket’s velocity in the body frame relative to a static atmosphere;

• Vw ≜ Wind velocity disturbance in the body frame.

The sideslip angle can also be expressed for V ≈ u as

β′ = arctan
(v
u

)
(2.5)
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The illustration of the wind angles is given in Fig. 2.5.

α
β'

yb

zb

xb

V

u w
v

β

Figure 2.5: Wind angles representation.

2.3.2 System of Particles

Using Newton’s laws implies that the rocket is assumed to be a point mass. In

order to describe the rocket’s attitude, the rocket will also be assumed to be taken

as a system of particles called a rigid body whose characteristics are concentrated

at its center of mass. In other words, any translational and rotational changes that

are ’felt’ by the center of mass are the same changes that are ’felt’ by all of the

particles in the rigid body; e.g. acm = abody and ωcm = ωbody. Henceforth, the term

center of mass will be considered analogous to the center of gravity.

Due to the large contribution of the fuel mass to the entire rocket mass, the

changes in the mass profile (e.g. mass, inertia, the center of mass position, and

their time derivatives) are going to be taken into account. However, the rocket

is assumed to not undergo any deformations to its structure due to internal and

external forces and moments. The rocket will then be redefined as a rigid body

with a variable mass.

The rotational behaviors of a rigid body when exposed to moments can be

characterized by its inertia tensor. The inertia tensor represents a rigid body’s

rotational resistance and inertial coupling. Inertial coupling determines whether

one rotation in one axis will also induce another rotation in another axis. The

inertia tensor is going to be represented in the body coordinate system. It is
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mathematically described as

I =

 Ixx −Ixy −Ixz
−Ixy Iyy −Iyz
−Ixz −Iyz Izz

 (2.6)

where

• Ixx, Iyy, and Izz ≜ The second mass moment of inertia in x-, y-, and z-axis,

respectively;

• Ixz, Ixy, and Iyz ≜ The products of inertia in xz-, xy-, and yz-plane, respec-

tively.

For any rigid body, there exists a set of coordinate axis called the principal axes

in which all of the three products of inertia are zero, such that

I =

Ixx 0 0

0 Iyy 0

0 0 Izz

 (2.7)

2.3.3 Coriolis Law

External forces are normally described in the body frame. However, the basic

form of Newton’s 2nd law only accounts for motions observed in an inertial frame.

Therefore, a vector transformation between an inertial and a rotating body frame

is needed. This relationship is called the Coriolis law. The Coriolis law relates the

time derivative of a vector between an inertial and a rotating frame

dρ

dt

∣∣∣
i
=
dρ

dt

∣∣∣
b
+ (Ω× ρ)

∣∣∣
b

(2.8)

where ρ is any vector fixed to the rotating frame and Ω the angular velocity of

the rotating frame while the subscripts i and b indicate that the particular terms

are observed in the inertial and the body frame respectively.
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2.3.4 Dynamical Equations

The translational and rotational equations for a rocket derived from Newton’s 2nd

law take on a similar form (Cornelisse, Schöyer, & Wakker, 1979)

• Translational Motion

m
dV

dt

∣∣∣
i
= Fc + Fe (2.9)

• Rotational Motion

d

dt
(I ·Ω)

∣∣∣
i
− dI

dt

∣∣∣
b
·Ω = Mc +Me (2.10)

where

• Fc and Mc ≜ Coriolis force and moment;

• Me and Me ≜ External force and moment;

• m and I ≜ The rocket’s mass and inertia;

• V and Ω ≜ The rocket’s translational and angular velocity.

The external forces and moments can be represented by the summation of forces

and moments due to gravity (Fg & Mg), aerodynamics (Fa & Ma), and thrust (Ft

& Mt)

Fe = Fg + Fa + Ft (2.11)

Me = Mg +Ma +Mt (2.12)

Using Coriolis law (Eq. 2.8) to express the remaining derivatives on the left

hand side of Eq. 2.9 and Eq. 2.10 in the body frame yields

dV

dt

∣∣∣
i
=
dV

dt

∣∣∣
b
+ (Ω×V)

∣∣∣
b

(2.13)

d

dt
(I ·Ω)

∣∣∣
i
=
dI

dt

∣∣∣
b
·Ω+ I · dΩ

dt

∣∣∣
b
+Ω× (I ·Ω). (2.14)

From this point onwards, the subscript b will be dropped while also considering

that the Coriolis and external forces and moments will also be derived in the body
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frame. Equations Eq. 2.9 and Eq. 2.10 can then be rewritten as

m
dV

dt
+m(Ω×V) = Fc + Fg + Fa + Ft (2.15)

I · dΩ
dt

+
dI

dt
·Ω+Ω× (I ·Ω)− dI

dt
·Ω = Mc +Mg +Ma +Mt. (2.16)

2.3.5 Kinematic Equations

Eq. 2.15 and Eq. 2.16 are sufficient to analyze the stability and control of a

rocket. However, these two equations are unable to give direct information on how

the rocket’s position and orientation change in the inertial frame. The rocket’s

position and orientation are used to calculate gravitational acceleration, thrust,

and aerodynamic forces and moments. There needs to be another set of equations

to relate the rocket’s trajectory in the inertial and body frame.

Such equations can be obtained by analyzing the rocket’s kinematics. Kinemat-

ics is commonly defined as the study of the geometry of motion. For a rocket, the

kinematical equations are divided into translational and rotational equations. The

construction of these equations is similar to the construction of a vector rotation

transformation matrix such that the order of the transformation matrix multipli-

cation is important. In aerospace applications, the standard rotation sequence

begins with a yaw rotation, followed by a pitch rotation, into a roll rotation (ro-

tation from z, y, into x-axis). This sequence is used for both translational and

rotational kinematics equations.

As a consequence of using the Euler angles, there could be a case called the

gimbal locking where the body of interest would lose two rotational degrees of

freedom. Mathematically, there would be a singularity in the dynamics calculation.

To avoid this condition, the range of the Euler angles will be limited to (Stevens,

Lewis, & Johnson, 2016)

− π < ϕ ≤ π

− π/2 ≤ θ ≤ π/2

− π < ψ ≤ π

(2.17)
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Translational Kinematic Equations

The translational kinematics equations can be generated by converting the velocity

vectors of the inertial frame to the body frame using rotation matrices. The first

rotation occurs about the z-axis of the inertial frame which creates the yaw angle

ψ (Fig. 2.6). The result of the first rotation is the intermediate frame 1 denoted

by the subscript 1ẋ1ẏ1
ż1


1

=

 cosψ sinψ 0

− sinψ cosψ 0

0 0 1


ẋẏ
ż


i

= H1
i

ẋẏ
ż


i

(2.18)

ψ

ψ

ψ

y1

yi

x1

xi

Figure 2.6: The relationship between the inertial and first inter-
mediate frame.

Following the first rotation, the resulting intermediate frame is then rotated

about its y-axis by the pitch angle θ (Fig. 2.7). Again, the resulting frame is called

the intermediate frame 2 denoted by the subscript 2ẋ2ẏ2
ż2


2

=

cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ


ẋ1ẏ1
ż1


1

= H2
1

ẋ1ẏ1
ż1


1

(2.19)

The last rotation occurs about the x-axis of the intermediate frame 2 which

creates the roll angle ϕ (Fig. 2.8). The result of this rotation is the body frame

which is given as
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θ

θ

x1

z2

z1

θ

x2

Figure 2.7: The relationship between the first and second inter-
mediate frame.

uv
w


b

=

1 0 0

0 cosϕ sinϕ

0 − sinϕ cosϕ


ẋ2ẏ2
ż2


2

= Hb
2

ẋ2ẏ2
ż2


2

(2.20)

yb

z2

zb

φ

y2

φ

φ

Figure 2.8: The relationship between the body and second inter-
mediate frame.

Summarized, the velocity relationships between the inertial and body frame can

be given as uv
w


b

= HB
2 H

2
1H

1
I

ẋẏ
ż


i

= Hb
i

ẋẏ
ż


i

(2.21)

with
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Hb
i =

 cθcψ cθsψ −sθ
−cϕsψ + sϕsθcψ cϕcψ + sϕsθsψ sϕcθ

sϕsψ + cϕsθcψ −sϕcψ + cϕsθsψ cϕcθ

 (2.22)

where c and s in Eq. 2.22 represent cosine and sine functions respectively. Fur-

thermore, by calculating the inverse of Hb
i it can be proven that the inverse and

the transpose of Hb
i are identical, which also means that

(Hb
i)

−1 = (Hb
i)

T = Hi
b (2.23)

thus ẋẏ
ż

 = Hi
b

uv
w

 (2.24)

Rotational Kinematics Equations

Compared to its translational counterpart the projection method is less intuitive

geometrically to transform angular rates from an inertial frame to a body frame

and vice-versa. Therefore, a different approach will be taken while also noting that

the individual rotations can be combined through vector additions provided the

rotation vectors involved are transformed into the body frame before the addition.

Referring to Fig. 2.6, 2.7, and 2.8, it can be seen that the first rotation (yawing)

occurs about the z-axis of the inertial frame, zi, the second rotation (pitching)

occurs about the y-axis of the intermediate frame 1, y1, and the last rotation

(rolling) occurs about the x-axis of the intermediate frame 2, x2. In the light of the

previous paragraph, the vector additions of these rotation vectors would equate to

the angular rates in the body framepq
r


b

=

ϕ̇0
0


2

+

0θ̇
0


1

+

0

0

ψ̇


i

(2.25)

The individual rotations will now be transformed into the body frame. This

is done by considering the correlations between the frames described in Eq. 2.18,

2.19, and 2.20. The transformation results to
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pq
r


b

= Hb
2

ϕ̇0
0


2

+Hb
2H

2
1

0θ̇
0


1

+Hb
2H

2
1H

1
i

0

0

ψ̇


i

=

1 0 − sin θ

0 cosϕ sinϕ cos θ

0 − sinϕ cosϕ cos θ


ϕ̇θ̇
ψ̇


i

(2.26)

Inversing Eq. 2.26 to solve for angular rates in the inertial frame yieldsϕ̇θ̇
ψ̇


i

=

1 sinϕ tan θ cosϕ tan θ

0 cosϕ − sinϕ

0 sinϕ sec θ cosϕ sec θ


pq
r


b

(2.27)

2.3.6 Forces and Moments

Thrust Force and Moment

A rocket engine is a type of propulsion system that, unlike a conventional aircraft,

also carries its own oxidizer in addition to its fuel for combustion. Similar to a jet

engine, the basic principle of a rocket engine is to produce thrust by ejecting fuel

through its nozzle. The nett thrust from a rocket engine can be mathematically

expressed by

Tnett = ṁeVe + (Pe − P )Ae (2.28)

where

• ṁe and Ve ≜ The flowrate and velocity of expelled mass at the exhaust nozzle,

respectively;

• P and Pe ≜ The ambient and exhaust nozzle static pressure, respectively;

• Ae ≜ The surface area of the exhaust nozzle.

The rocket engine performance is commonly measured by an engine static test.

Thrust data from an engine static test at a known static pressure can be expressed
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mathematically as

Tdata = ṁeVe + PeAe (2.29)

Knowing that the ambient static pressure is a function of altitude, the modified

thrust equation can be rewritten as

Tnett = Tdata − P (h)Ae (2.30)

Assuming that there is no more pressure difference due to thrust at the rocket’s

nozzle after burnout, the final thrust equation can be expressed as

T =

Tnett, if 0 < t ≤ tb

0, if t > tb
(2.31)

where tb is the rocket burn time. Since the rocket engine is completely symmetrical

and collinear with the rocket’s longitudinal axis, we will neglect the moment due

to thrust and assume that the thrust will only act in the direction of the rocket’s

x-axis. The resulting thrust can be represented in the vector form as

Ft =

T0
0

 (2.32)

Aerodynamic Forces and Moments

Any body immersed in a fluid and moving relative to the fluid experiences dynamic

force and moment. For air, this phenomenon is subsequently called the aerody-

namic force and moment. The aerodynamic force and moment can be described

mathematically in vector form as

• Aerodynamic Force

Fa = q∞S

CA

CY

CN

 =

X
′

Y ′

Z ′

 (2.33)

24/136



NUMERICAL INVESTIGATION OF MOMENTS OF INERTIA’S UNCERTAINTY

EFFECTS ON LAPAN RX-200C ROCKET

• Aerodynamic Moment

Ma = q∞Slref

Cl

Cm

Cn

 =

L
′

M ′

N ′

 (2.34)

with

q∞ =
1

2
ρV 2 (2.35)

where

• q∞ ≜ Dynamic pressure;

• ρ ≜ Air density;

• V ≜ Freestream velocity;

• S ≜ Reference surface area;

• [CA CY CN ]
T ≜ From left to right: axial, side force, and normal force coeffi-

cient;

• [Cl Cm Cn]
T ≜ From left to right: rolling, pitching, and yawing moment

coefficient;

• lref ≜ Reference length.

The aerodynamic coefficients are dimensionless constants that are able to de-

scribe the aerodynamic characteristics of a body. They can be determined analyt-

ically, numerically, experimentally, or a combination of the three methods. These

coefficients can be initially defined as functions of:

• Angular velocity Ω = [p q r]T ;

• Control surface deflection δc = [δa δe δr]
T ;

• Angle of attack α and its rate α̇;

• Sideslip angle β;
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• Mach number M;

• Center of gravity xcg;

• Reynold’s number Re.

The contribution of the control surface deflections can often be omitted for

a ballistic flight. The effect of Reynold’s number is often negligible for a rocket

flight in comparison to other parameters. In general, the center of gravity does not

have any obvious role in aerodynamics. However, as the center of gravity is the

chosen moment reference center, a moving center of gravity would in turn change

the magnitude of the aerodynamic moments.

The influence of the sideslip angle and angular velocites can be approximated

using a first-order Taylor series expansion. In line with the longitudinal and lateral-

directional decoupling of a symmetric, flying vehicle, the first-order Taylor series

approximation for the longitudinal mode can then be given as

C(lon)(M, α, xcg, α̇, q) = C(lon) (2.36)

C(lon) = C(lon)0
+
∂C0

∂α̇
α̇ +

∂C0

∂q
q (2.37)

with

C(lon)0
= C(lon)(M, α, xcg, 0, 0) (2.38)

where every partial derivative are evaluated at varying M, α, and xcg and a constant

value of α̇ = 0 and q = 0.

Similarly, the Taylor series expansion for the lateral-directional mode can be

given as

C(ld)(M, α, xcg, β, p, r) = C(ld) (2.39)

C(ld) = C(ld)0
+
∂C0

∂β
β +

∂C0

∂p
p+

∂C0

∂r
r (2.40)

with

C(ld)0
= C(lon)(M, α, xcg, 0, 0, 0) (2.41)

where every partial derivative are again evaluated at varying M, α, and xcg and a

constant value of β = 0, p = 0, and r = 0. The partial derivatives in Eq. 2.37 and

Eq. 2.40 are defined as the aerodynamic derivative coefficients:
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Cmq =
∂Cm

∂
(

qlref
2V

) CNq =
∂CN

∂
(

qlref
2V

) CAq =
∂CA

∂
(

qlref
2V

)
Cmα̇ = ∂Cm

∂
(

α̇lref
2V

) CNα̇ = ∂CN

∂
(

α̇lref
2V

) CAα̇ = ∂CA

∂
(

α̇lref
2V

)
Clp =

∂Cl

∂
(

plref
2V

) Cnp =
∂Cn

∂
(

plref
2V

) CY p =
∂CY

∂
(

plref
2V

)
Clr =

∂Cl

∂
(

rlref
2V

) Cnr =
∂Cn

∂
(

rlref
2V

) CY r =
∂CY

∂
(

rlref
2V

)
Clβ = ∂Cl

∂β
Cnβ = ∂Cn

∂β
CY β = ∂CY

∂β

where all of the dynamic derivative coefficients are non-dimensionalized using

the factor
lref
2V

. In summary, the aerodynamic forces and moments can be rewritten

in terms of the aerodynamic coefficients as

• Aerodynamic Force

Fa = q∞S

CA

CY

CN

 = q∞S


CA0 + CAq

(
qlref
2V

)
+ CAα̇

(
α̇lref
2V

)
CY0 + CY ββ + CY p

(
plref
2V

)
+ CY r

(
rlref
2V

)
CN0 + CNq

(
qlref
2V

)
+ CNα̇

(
α̇lref
2V

)
 (2.42)

• Aerodynamic Moment

Ma = q∞Slref

Cl

Cm

Cn

 = q∞Slref


Cl0 + Clββ + Clp

(
plref
2V

)
+ Clr

(
rlref
2V

)
Cm0 + Cmq

(
qlref
2V

)
+ Cmα̇

(
α̇lref
2V

)
Cn0 + Cnββ + Cnp

(
plref
2V

)
+ Cnr

(
rlref
2V

)


(2.43)

Gravitational Force and Moment

As the chosen moment center is the rocket’s center of gravity, the moment due to

gravity will be neglected for the moment equations. The gravitational force in the

inertial frame can be mathematically expressed in vector form as

Fg =

 0

0

mg


i

(2.44)
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Transforming the gravitational force into the body frame using the rotation

matrix Hb
i from Eq. 2.22 yields

Fg = Hb
i

 0

0

mg


i

= mg

 − sin θ

cos θ sinϕ

cos θ cosϕ


b

=

Fgx

Fgy

Fgz

 (2.45)

Coriolis Force and Moment

The Coriolis force and moment are considered as fictitious force and moment. They

appeared in the equations due to the relative motion between the propelled fuel

and the center of gravity of the rocket (Cornelisse et al., 1979). The Coriolis force

is defined by

Fc = 2ṁΩ× rn (2.46)

The Coriolis force will be neglected due to its small magnitude relative to the

rocket thrust. However, the Coriolis moment will not be neglected as it will provide

a considerable damping characteristic to the rocket during powered flight. The

Coriolis moment is defined by

Mc = −dI
dt

∣∣∣
b
·Ω+ ṁrn × (Ω× rn) (2.47)

where

rn =

xnyn
zn

 (2.48)

For a rocket with a circular, flat exhaust nozzle surface area, the center of mass flow

rn is defined by the distance between the center of mass and the exhaust nozzle

surface area center point as shown in Fig. 2.9.

It follows that the terms −dI
dt

∣∣∣
b
in Eq. 2.47 and Eq. 2.16 will cancel each other

out (the term in Eq. 2.16 is already represented in the body frame). Therefore,

the remaining contribution of the Coriolis moment will be expressed as

M′
c = ṁrn × (Ω× rn) (2.49)
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Figure 2.9: Center of mass flow.

2.4 Equations of Motion Summary

Figure 2.10: Free body diagram.

The free-body diagram following the derivations of the equations of motion and

the corresponding forces and moments in the previous section is given in Fig.2.10.

The contribution of the Coriolis moment will not be included in the free body

diagram since it is not considered as an external moment. We can then rewrite the

dynamical equations Eq.2.15 and Eq.2.16 in scalar form as

• Force equations:

m(u̇+ qw − rv) = X ′ −mg sin θ + T

m(v̇ + ru− pw) = Y ′ +mg cos θ sinϕ

m(ẇ + pv − qu) = Z ′ +mg cos θ cosϕ

(2.50)
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• Moment equations:

Ixxṗ− (Iyy − Izz)qr = L′

Iyy q̇ + (Ixx − Izz)pr =M ′ + ṁqx2n

Izz ṙ − (Ixx − Iyy)pq = N ′ + ṁrx2n

(2.51)

where we have assumed that the rocket’s center of gravity moves along the

principal axes (Eq.2.7) and the rocket’s center of mass flow is defined as

rn =

xn0
0

 (2.52)

2.5 Statistics

2.5.1 Monte Carlo Simulation

A Monte Carlo simulation is a numerical simulation that utilizes the Monte Carlo

method where an event is performed several times to generate patterns in the

distribution arising from the repeated events. This type of simulation can help

find the uncertainty propagation of an equation. The propagation of uncertainty

of an equation describes how the uncertainty in the equation’s variables affects the

outcome of the equation.

The origin of the Monte Carlo method dated back to the World War II-era

when American physicists were stuck on the atomic bomb design. The complex

nature of an atomic bomb made it hard to be solved with conventional analytical

methods. At the present time, the Monte Carlo simulation can be used universally

to solve any problems with naturally probabilistic behavior.

A Monte Carlo simulation utilizes random samplings of variables according to a

known distribution. A common distribution that is used is the normal distribution

due to its frequent occurrence in nature. A Monte Carlo simulation relies on the

Law of Large Numbers and the Central Limit Theorem where, if combined, given a

large enough sample, the distribution of the population will be normally distributed
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Figure 2.11: Flowchart of a Monte Carlo simulation.

and will converge to a single value. The flow of a Monte Carlo simulation is

summarized in Fig. 2.11.

Even though the uncertainty is stochastic, the equations of motion are generally

deterministic. As soon as the uncertainty is set and the randomising process stops,

the whole simulation will become deterministic. Furthermore, the accuracy of a

Monte Carlo simulation depends heavily on the number of simulation runs. Thus,

the required computing power can grow large quickly. Nonetheless, with the current

advancement in computing technology, a Monte Carlo simulation is getting more

and more affordable.

2.5.2 Normal Distribution

A normal, or Gaussian, distribution is a type of theoretical probability distribution

containing random real values which often occur naturally in real-life distributions.

It can be useful to predict an event from a distribution or, the other way around,

creating a distribution that has a normal probabilistic nature. The mathematical

description of a normal distribution with a mean µ, standard deviation σ, and

random value x can be expressed by its probability density function in general

form as

f(x) =
1

σ
√
2π
e−

1
2(

x−µ
σ )

2

(2.53)

The distinct bell shape of a normal distribution curve is illustrated in Fig. 2.12.

One convenient thing about a normal distribution is that the probability of an event

occurring can be directly determined by the 68-95-99.7 rule or also formally called
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Figure 2.12: Various normal distribution curves.

the empirical rule. The empirical rule states that events within 1σ, 2σ, and 3σ

distance from the average have a probability of 68%, 95%, and 99.7% (PSU, 2022).

2.5.3 Kernel Density Estimation

Figure 2.13: Comparison between a histogram and kernel density
estimation (Drleft, 2010).

A kernel density estimation is a method to approximate the probability density

function of a random distribution. In principle, a kernel density estimation works

similar to a histogram as demonstrated in Fig. 2.13. One of the main propositions

of the kernel density estimation lies in its non-parametric nature where it is assumed

that the distribution does not belong to any theoretical probability distributions.

The kernel density estimator can be mathematically expressed by

f̂h(x) =
1

nh

n∑
i=1

K

(
x− xi
h

)
(2.54)

where,
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• n ≜ Number of sample data;

• h ≜ Bandwidth;

• xi ≜ Sample data value;

• K ≜ Kernel function.

From Eq. 2.54 it can be seen that aside from the data sample, the character-

istic of a kernel density estimate can be characterized by its kernel function and

bandwidth. The selection of the appropriate kernel function and bandwidth may

determine the accuracy of the estimate. Fig. 2.14 shows common kernel functions.

In general, the selection of the kernel function is not as crucial as the bandwidth.

The bandwidth is also commonly referred to as the smoothing parameter. Some

data might not be properly represented if the smoothing parameter is too big while

the data might be too ”jaggy” if the smoothing parameter is too small. In practice,

the bandwidth can be tuned manually or automatically using tuning algorithms.
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Figure 2.14: Various kernel functions (Amberg, 2008).
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CHAPTER 3

RESEARCH METHODOLOGY

3.1 Research Overview
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Figure 3.1: Research flowchart

This thesis begins by collecting and processing the mass profile, thrust data, and

shape of the rocket RX-200C. The required data such as the rocket shape and thrust

profile are obtained from LAPAN. The aerodynamic characteristics of the rocket are

generated by using Missile DATCOM. Missile DATCOM takes the rocket’s shape

and flight condition as input and outputs the rocket’s aerodynamic coefficients.

The resulting rocket data will then be initialized in MATLAB workspace using

scripts and stored in a file to be used by the Simulink model.

The dynamical framework and simulation are modeled in Simulink. Both spe-

cialized built-in and custom made functions (i.e. for mathematical equations) will

be utilized. Separate modeling will be created for:

1. Forces and Moments: Thrust, aerodynamics, gravity, and Coriolis;

2. Mass and moments of inertia
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3. Atmosphere

4. Sensor/Data Processing

The ballistic simulation analysis is categorized into two cases:

• Nominal: With wind disturbance but without uncertainty;

• Uncertainty: Monte Carlo simulations with wind disturbance and moments

of inertia uncertainty.

The Monte Carlo simulation is set up through a MATLAB script that gen-

erates randomized moments of inertia profile for the Simulink model before each

run. Simulation results are transferred to the MATLAB workspace and stored in

several saved variable files. Lastly, data visualization will be done in MATLAB

and Python. The focus of the analysis will be the trajectory and stability of the

rocket under moments of inertia uncertainty.

3.2 Physical Modeling

(a)

(b)

Figure 3.2: (A)RX-200C sections overview. (B) RX-200C front
view.
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Part m (kg) xcg (m) Ixx (kgm2) Iyy (kgm2)

Rocket, fully fueled 216.658 2.182 1.5 200.83
Fuel 79.91 2.714(c) 0.4593(c) 30.1022(c)

Rocket, after burnout 136.748(c) 1.8711(c) 1.0407(c) 134.8952(c)

Note: Inertia values are taken at the particular part’s center of mass.

Subscript (c) indicates a calculated/approximated value.

Table 3.1: Summary of the mass characteristics.

The rocket that will be analyzed in this thesis is the LAPAN RX-200C rocket.

The RX-200C rocket is a solid-propellant rocket having a 20 cm maximum diameter

and a length of 4.062 m. The three main sections of the rocket as well as its two fin

sets are displayed in Fig. 3.2. Each of the two fin sets has its own airfoil profile for

its four fins. The front fin set features all-movable fins which are commonly referred

to as canards while the fins for the aft fin set are fixed and act as stabilizing fins.

The complete sizing of the rocket and each fin set can be found in Appendix A.

It can be seen from Tab. 3.1 that the mass contribution of the fuel (fuel fraction)

is approximately 35% of the wet mass of the rocket. This mass is going to be ejected

only in the span of 10 seconds. For comparison, the typical fuel fraction of modern

airliners ranges from 26-45% (Fuel fraction, 2020). However, the time it takes for

these airliners to spend all of their fuel is in the order of hours. In other words, the

mass characteristics of an airliner can then be assumed to be constant for a small

time frame several magnitudes lower than its whole flight. For the RX-200C rocket

case, however, the mass modeling will have to include the effect of a changing mass

through this 10 seconds time frame.

With this in mind, the mass characteristics need to be approximated since

the data provided by LAPAN does not include the necessary mass characteristics

during engine burn. The mass characteristics that will be approximated are mass,

the center of gravity, and moments of inertia.

The moments of inertia Iyy and Izz will have the same value due to the rocket’s

symmetry. The products of inertia will also be zero as the rocket’s inertia tensor

will be calculated about its center of mass.
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Linear interpolation will be used to approximate the mass characteristics be-

tween wet and dry mass rocket’s condition. The methods to approximate the

necessary fuel and dry mass characteristics are summarized in Appendix A. The

resulting approximations are summarized in Tab. 3.1 and shown as graphs in Fig.

3.3 and Fig. 3.4. All of the mass characteristics stay constant after the engine

stops firing (t > 10 s) and will hold the last value registered at t = 10 s.
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Figure 3.3: Mass (left) and center of gravity position (right).
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Figure 3.4: Second moments of inertia graphs; about x-axis (left)
and about y and z-axis (right).

The thrust characteristic of the RX-200C rocket is shown in Fig. 3.5. The

data shown in Fig. 3.5 was obtained from a sea-level static test result by LAPAN.

The thrust curve is characteristic of a tubular-type grain geometry. During its 10

seconds engine burn the rocket will achieve a maximum thrust of 27.147 kN at time

t = 6.6 s.
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Figure 3.5: Thrust Profile.

3.3 Missile DATCOM

The USAF DATCOM is a computer program written in FORTRAN that started

out as a handbook developed by the US Air Force to approximate the aerody-

namic coefficients of a flying body with analytical and empirical methods. Two

types of DATCOM programs exist; Digital DATCOM and Missile DATCOM. Dig-

ital DATCOM is specialized for bodies resembling a conventional aircraft while

Missile DATCOM is specialized for bodies resembling a missile or a rocket. Usage-

wise, the differences between the two versions lie in the terms of the input variables

that are used. Digital DATCOM uses aircraft terms while Missile DATCOM uses

missile/rocket terms. Additionally, Missile DATCOM is equipped with more ap-

propriate functions for a supersonic flight when compared to Digital DATCOM

(Vukelich, 1981). In this thesis, we will be using Missile DATCOM 1997 FOR-

TRAN 90 revision (Blake, 1998).
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3 

 
Figure 1.  Coefficient Axis System 

 
 For body alone or body plus fin combinations, the following parameters are also 
computed, all in the body axis system: 
 

CMq Pitching moment coefficient derivative with pitch rate 

CNq Normal force coefficient derivative with pitch rate 

CAq Axial force coefficient derivative with pitch rate 

CMdot Pitching moment derivative with rate of change of angle of attack 

CNdot Normal force derivative with rate of change of angle of attack 

Clp Rolling moment coefficient derivative with roll rate 

Cnp Yawing moment coefficient derivative with roll rate 

CYp Side force coefficient derivative with roll rate 

Clr Rolling moment coefficient derivative with yaw rate 

Cnr Yawing moment coefficient derivative with yaw rate 

CYr Side force coefficient derivative with yaw rate 
 
 The output units of the aerodynamic derivatives can be in degrees or radians and is 
controlled by the DERIV control card.  This control card has no effect on input angles, input 
angles are always specified in degrees.  Partial output results, which detail the components 
used in the calculations, are also optionally available using the PART and/or BUILD control 
cards. 
 

Figure 3.6: Missile DATCOM’s coordinate system (Auman et al.,
2008).

3.3.1 Input Definition

To generate aerodynamic coefficients using Missile DATCOM, an input file must

first be prepared. This input file contains the necessary parameters that will rep-

resent the shape and flight conditions of the rocket. The input file is in the format

of a plain text file (.txt) with a specific filename for005.dat. The execution of an

aerodynamics calculation is called a ”case”. Input parameters for a case are di-

vided into variable groups called namelists and control cards. Note that Missile

Datcom has a different coordinate system when compared to the one that is com-

monly used for conventional aircraft. In this Missile DATCOM version, the sideslip

angle β is defined as β′ in Fig. 3.6. The full input file is provided in Appendix B.

For the full explanations of the available namelists and control cards, the reader is

to consult the Missile DATCOM manual (Blake, 1998).

FLTCON Namelist

In this namelist, the ranges for the angle of attack, Mach number, and Reynolds

number are specified. The Reynolds number can be substituted by altitude. The

program will then calculate the Reynolds number based on the specified Mach
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$FLTCON
 NALPHA = 19.0,
 ALPHA(1) = -18.,-16.,-14.,-12.,-10.,-8.,-6.,-4.,
 ALPHA(9) = -2.,0.,2.,4.,6.,8.,10.,12.,14.,16.,18.,
 NMACH = 15.0,
 MACH(1) = 0.15,0.3,0.45,0.6,0.75,0.9,1.05,1.2,
 MACH(9) = 1.35,1.5,1.65,1.8,1.95,2.1,2.25,
 ALT(1) = 0.E03,0.E03,0.E03,0.E03,0.E03,0.E03,0.E03,0.E03,
 ALT(9) = 0.E03,0.E03,0.E03,0.E03,0.E03,0.E03,0.E03,
 BETA = 0.,
$END
$REFQ
 SREF = 0.12946,
 LREF = 0.203,
 LATREF = 0.203,
 XCG = 2.182,
 ZCG = 0.0,
 BLAYER = 0.0,
 ROUGH = 0.0012,
$END
$AXIBOD
 X0 = 0.0,
 TNOSE = 1.,
 LNOSE = 0.600,
 DNOSE = 0.203,
 LCENTR = 3.462,
 DCENTR = 0.203,
 DEXIT = 0.16,
$END
$FINSET1
 SECTYP = HEX,
 SSPAN = 0.,0.144,
 CHORD = 0.227,0.054,
 XLE = 0.756,
 STA   = 0.0,
 SWEEP = 31.0,
 NPANEL = 4.0,
 PHIF = 0.0,90.0,180.0,270.0,
 LER = 0.002,0.002,
 ZUPPER = 0.0122,0.054,
 ZLOWER = 0.0122,0.054,
 LMAXU = 0.16,0.6,
 LMAXL = 0.16,0.6,
 LFLATU = 0.745,0.023,
 LFLATL = 0.745,0.023,
$END
$FINSET2
 SECTYP = HEX,
 SSPAN = 0.,0.200,
 CHORD = 0.399,0.150,
 XLE = 3.663,

Firefox file:///C:/Users/faisal/AppData/Local/Temp/tmp8nsl9cn1.html
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Figure 3.7: FLTCON Namelist

number and atmospheric properties of the given altitudes (1962 Standard Atmo-

sphere Model). The sideslip angle can also be included as an input. However, each

case can only be executed for one sideslip angle value. The range of these param-

eters should correspond to the estimated simulation conditions. It is advised to

use an increment that will include transonic Mach numbers to accurately simulate

the transition between subsonic and supersonic regimes. As previously stated in

Sec. 2.3.6, the change of Reynold’s number will be neglected. This is reflected

by the altitude array ALT in Fig. 3.7 that is set to one value 0.0E03. This value

corresponds to the sea-level atmospheric condition.

REFQ Namelist

$FLTCON
 NALPHA = 19.0,
 ALPHA(1) = -18.,-16.,-14.,-12.,-10.,-8.,-6.,-4.,
 ALPHA(9) = -2.,0.,2.,4.,6.,8.,10.,12.,14.,16.,18.,
 NMACH = 15.0,
 MACH(1) = 0.15,0.3,0.45,0.6,0.75,0.9,1.05,1.2,
 MACH(9) = 1.35,1.5,1.65,1.8,1.95,2.1,2.25,
 ALT(1) = 0.E03,0.E03,0.E03,0.E03,0.E03,0.E03,0.E03,0.E03,
 ALT(9) = 0.E03,0.E03,0.E03,0.E03,0.E03,0.E03,0.E03,
 BETA = 0.,
$END
$REFQ
 SREF = 0.12946,
 LREF = 0.203,
 LATREF = 0.203,
 XCG = 2.182,
 ZCG = 0.0,
 BLAYER = 0.0,
 ROUGH = 0.0012,
$END
$AXIBOD
 X0 = 0.0,
 TNOSE = 1.,
 LNOSE = 0.600,
 DNOSE = 0.203,
 LCENTR = 3.462,
 DCENTR = 0.203,
 DEXIT = 0.16,
$END
$FINSET1
 SECTYP = HEX,
 SSPAN = 0.,0.144,
 CHORD = 0.227,0.054,
 XLE = 0.756,
 STA   = 0.0,
 SWEEP = 31.0,
 NPANEL = 4.0,
 PHIF = 0.0,90.0,180.0,270.0,
 LER = 0.002,0.002,
 ZUPPER = 0.0122,0.054,
 ZLOWER = 0.0122,0.054,
 LMAXU = 0.16,0.6,
 LMAXL = 0.16,0.6,
 LFLATU = 0.745,0.023,
 LFLATL = 0.745,0.023,
$END
$FINSET2
 SECTYP = HEX,
 SSPAN = 0.,0.200,
 CHORD = 0.399,0.150,
 XLE = 3.663,

Firefox file:///C:/Users/faisal/AppData/Local/Temp/tmp8nsl9cn1.html
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Figure 3.8: REFQ Namelist

In the REFQ namelist, the reference quantities are specified. The use of this

namelist is optional. If this namelist is not specified by the user, the parameters

will then be filled by the program according to preset default settings. For mis-

siles and rockets, it is common to choose the maximum diameter of the rocket as

the longitudinal (LREF) and lateral-directional (LATREF) reference lengths. The
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surface area (SREF) is defined by the area at maximum diameter. The variable

XCG is measured as the distance in the x-axis from the nose tip to the rocket’s

center of gravity. The surface roughness of the rocket is specified using the variable

ROUGH.

Aside from the surface roughness, the quantities specified in this namelist can

refer to any arbitrary features as long as the user is consistent with their use. For

example, LATREF could also refer to the rocket’s length instead of the rocket’s

maximum diameter. However, the rocket’s length would then need to be used

when calculating the aerodynamic moments or when comparing the aerodynamic

coefficients with other rockets.

AXIBOD Namelist

$AXIBOD
 X0 = 0.0,
 TNOSE = 1.,
 LNOSE = 0.600,
 DNOSE = 0.203,
 LCENTR = 3.462,
 DCENTR = 0.203,
 DEXIT = 0.16,
$END

Figure 3.9: AXIBOD Namelist

In this namelist the shape of the rocket’s main body (without the fin sets) from

the nose tip to the rocket’s nozzle is defined. Illustrated in Fig. 3.10, the body

of a rocket can be broken down into 3 main sections; the nose cone, center, and

aft sections. The corresponding length and diameter of each section need to be

specified. The shape of the nose cone is tangent ogive and coded as TNOSE = 1

as shown in Fig. 3.9. The RX-200C rocket does not have an aft section since the

main body diameter of the rocket stays constant right after the nose cone until the

nozzle exit. Therefore, the entire section from the base of the nose cone until the

nozzle exit will be defined as the rocket’s center section.
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Figure 1  Body Geometry Inputs
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Figure 3.10: Main body sections (Blake, 1998).

FINSET Namelist

The shape, position, and orientation of the rocket’s fins are defined in the FINSET

namelist. The fin panels present in the rocket are grouped into fin sets. The

RX200C rocket has two fin sets: a group of four fin panels as canards at the front

portion of the rocket and a group of four fin panels as stabilizing fins at the aft

section of the rocket. The parameters for each of the finsets need to be specified

in two separate namelist. Sequentially from the nose tip, the namelist FINSET1

defines the canard fin set while the namelist FINSET2 defines the stabilizing fins

fin set. The graphical interpretations of the position and orientation definitions

specified in Fig. 3.11 are shown in Fig. 3.12 and Fig. 3.13.

The airfoil of the fin panels are designated per fin set; i.e. fin panels in the

same fin set must have the same type of airfoil. The available airfoil profiles in

Missile DATCOM are the hexagonal, circular arc, NACA, and user-defined airfoil

types. The hexagonal airfoil will be used in this thesis. The airfoil parameters

of a hexagonal airfoil is shown in Fig. 3.14. These parameters are specified as a

percentage of the chord at each span station.

Control Cards

Control cards are optional commands that provide extra functionalities to the users.

The control cards shown in Fig. 3.15 are used for:

• CASEID RX200C: Specifying the name of the case;
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$FLTCON
 NALPHA = 19.0,
 ALPHA(1) = -18.,-16.,-14.,-12.,-10.,-8.,-6.,-4.,
 ALPHA(9) = -2.,0.,2.,4.,6.,8.,10.,12.,14.,16.,18.,
 NMACH = 15.0,
 MACH(1) = 0.15,0.3,0.45,0.6,0.75,0.9,1.05,1.2,
 MACH(9) = 1.35,1.5,1.65,1.8,1.95,2.1,2.25,
 ALT(1) = 0.E03,0.E03,0.E03,0.E03,0.E03,0.E03,0.E03,0.E03,
 ALT(9) = 0.E03,0.E03,0.E03,0.E03,0.E03,0.E03,0.E03,
$END
$REFQ
 SREF = 0.12946,
 LREF = 0.203,
 LATREF = 0.203,
 XCG = 1.8185,
 ZCG = 0.0,
 BLAYER = 0.0,
 ROUGH = 0.0012,
$END
$AXIBOD
 X0 = 0.0,
 TNOSE = 1.,
 LNOSE = 0.600,
 DNOSE = 0.203,
 LCENTR = 3.462,
 DCENTR = 0.203,
 DEXIT = 0.16,
$END
$FINSET1
 SECTYP = HEX,
 SSPAN = 0.,0.144,
 CHORD = 0.227,0.054,
 XLE = 0.756,
 STA   = 0.0,
 SWEEP = 31.0,
 NPANEL = 4.0,
 PHIF = 0.0,90.0,180.0,270.0,
 LER = 0.002,0.002,
 ZUPPER = 0.0122,0.054,
 ZLOWER = 0.0122,0.054,
 LMAXU = 0.16,0.6,
 LMAXL = 0.16,0.6,
 LFLATU = 0.745,0.023,
 LFLATL = 0.745,0.023,
$END

Firefox file:///C:/Users/faisal/AppData/Local/Temp/tmp2_1mmal4.html
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(a) FINSET1 Namelist.

$FINSET2
 SECTYP = HEX,
 SSPAN = 0.,0.200,
 CHORD = 0.399,0.150,
 XLE = 3.663,
 STA = 0.0,
 SWEEP = 46.4,
 NPANEL = 4.0,
 PHIF = 0.0,90.0,180.0,270.0,
 ZUPPER = 0.0075,0.02, 
 ZLOWER = 0.0075,0.02, 
 LMAXU = 0.145,0.387,
 LMAXL = 0.145,0.387,
 LFLATU = 0.752,0.34,
 LFLATL = 0.752,0.34,
$END
$DEFLCT
 DELTA1=10.,0.,-10.,0.,
 DELTA2=0.,0.,0.,0.,
 XHINGE = 0.8695,
 SKEW = 0.,
$END
CASEID RX200C
PRINT GEOM BODY
DERIV DEG
DIM M
DAMP
NEXT CASE

Firefox file:///C:/Users/faisal/AppData/Local/Temp/tmpve1_xqy4.html
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(b) FINSET2 Namelist.

Figure 3.11: Fin set definition for (A) canard and (B) stabilizing
fins.
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Figure 3.12: FINSET position graphical interpretation.
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Figure 3.13: FINSET orientation graphical interpretation.
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Figure 10 HEX and ARC Airfoil Input

Figure 11 USER Airfoil Input
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Figure 3.14: Hexagonal airfoil parameters (Blake, 1998).

$FINSET2
 SECTYP = HEX,
 SSPAN = 0.,0.200,
 CHORD = 0.399,0.150,
 XLE = 3.663,
 STA = 0.0,
 SWEEP = 46.4,
 NPANEL = 4.0,
 PHIF = 0.0,90.0,180.0,270.0,
 ZUPPER = 0.0075,0.02, 
 ZLOWER = 0.0075,0.02, 
 LMAXU = 0.145,0.387,
 LMAXL = 0.145,0.387,
 LFLATU = 0.752,0.34,
 LFLATL = 0.752,0.34,
$END
$DEFLCT
 DELTA1=10.,0.,-10.,0.,
 DELTA2=0.,0.,0.,0.,
 XHINGE = 0.8695,
 SKEW = 0.,
$END
CASEID RX200C
PRINT GEOM BODY
DERIV DEG
DIM M
DAMP
NEXT CASE

Firefox file:///C:/Users/faisal/AppData/Local/Temp/tmpve1_xqy4.html
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Figure 3.15: Control Cards

• PRINT GEOM BODY: Printing output body coordinates to for009.dat out-

put file;

• DERIV DEG: Setting deg/s as the unit of angular rates;

• DIM M: Setting meter as the unit for lengths;

• DAMP: Prompting the program to output dynamic derivatives;

• NEXT CASE: Designating the termination of a case.

3.3.2 Output Description

The resulting aerodynamic coefficients that are calculated by this program can be

divided into three categories:

• Static Coefficients:

– CA ≜ axial force coefficient

– CY ≜ sideforce coefficient
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– CN ≜ normal force coefficient

– Cl ≜ rolling moment coefficient

– Cm ≜ pitching moment coefficient

– Cn ≜ yawing moment coefficient

• Static Derivative Coefficients:

– CNα ≜ normal force coefficient derivative with angle of attack

– Cmα ≜ pitching moment coefficient derivative with angle of attack

– CYβ
≜ side force coefficient derivative with sideslip angle

– Cnβ
≜ yawing moment coefficient derivative with sideslip angle

– Clβ ≜ rolling moment coefficient derivative with sideslip angle

• Dynamic Derivative Coefficients:

– Cmq ≜ pitching moment coefficient derivative with pitch rate

– CNq ≜ normal force coefficient derivative with pitch rate

– CAq ≜ axial force coefficient derivative with pitch rate

– Cmα̇
≜ pitching moment derivative with rate of change of angle of attack

– CNα̇
≜ normal force coefficient derivative with rate of change of angle

of attack

– Clp ≜ rolling moment coefficient derivative with roll rate

– CYp ≜ side force coefficient derivative with roll rate

– Cnp ≜ yawing moment coefficient derivative with roll rate

– Clr ≜ rolling moment coefficient derivative with yaw rate

– CYr ≜ side force coefficient derivative with yaw rate

– Cnr ≜ yawing moment coefficient derivative with yaw rate

After the program execution, several files will appear in the same folder based

on the namelists and control cards that are described in the previous section. The

aerodynamic coefficient data is stored in for006.dat file. A copy of the namelists
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and control cards of the input file is also included in the for006.dat file for error

checking. The axisymmetric body and mold line that is ”perceived” by the program

is also included as shown in Fig. 3.16.

 PRINT GEOM BODY                                                                 
 DERIV DEG                                                                       
 DIM M                                                                           
 DAMP                                                                            
 NEXT CASE                                                                       
    THE BOUNDARY LAYER IS ASSUMED TO BE TURBULENT
    THE INPUT UNITS ARE IN METERS, THE SCALE FACTOR IS   1.0000
1         ***** THE USAF AUTOMATED MISSILE DATCOM * REV 3/99 *****     CASE   1
               AERODYNAMIC METHODS FOR MISSILE CONFIGURATIONS          PAGE   2
                                   RX200C                                   
                        AXISYMMETRIC BODY DEFINITION

                             NOSE   CENTERBODY     AFT BODY        TOTAL
    SHAPE                   OGIVE     CYLINDER     --------
    LENGTH                   .600        3.462         .000        4.062   M
    FINENESS RATIO          2.956       17.054         .000       20.010
    PLANFORM AREA            .082         .703         .000         .784   M**2
    AREA CENTROID            .374        2.331         .000        2.127   M
    WETTED AREA              .259        2.208         .000        2.467   M**2
    VOLUME                   .010         .112         .000         .122   M**3
    VOL. CENTROID            .411        2.331         .000        2.167   M

                              MOLD LINE CONTOUR

     LONGITUDINAL STATIONS     .0000      .0600      .1200      .1800      .2400 
         .3000      .3600      .4200      .4800      .5400      .6000      .9462 
        1.2924     1.6386     1.9848     2.3310     2.6772     3.0234     3.3696 
        3.7158     4.0620*

                BODY RADII     .0000      .0197      .0372      .0525      .0656 
         .0767      .0856      .0926      .0975      .1005      .1015      .1015 
         .1015      .1015      .1015      .1015      .1015      .1015      .1015 
         .1015      .1015*
    NOTE - * INDICATES SLOPE DISCONTINUOUS POINTS
1         ***** THE USAF AUTOMATED MISSILE DATCOM * REV 3/99 *****     CASE   1
               AERODYNAMIC METHODS FOR MISSILE CONFIGURATIONS          PAGE   3
                                   RX200C                                   
                STATIC AERODYNAMICS FOR BODY-FIN SET 1 AND 2

       ******* FLIGHT CONDITIONS AND REFERENCE QUANTITIES *******
     MACH NO  =        .15                REYNOLDS NO = 3.478E+06 /M
     ALTITUDE =         .0 M         DYNAMIC PRESSURE =   1595.87 N/M**2
     SIDESLIP =        .00 DEG                   ROLL =       .00 DEG     
     REF AREA =       .129 M**2         MOMENT CENTER =     2.182 M
     REF LENGTH =      .20 M           LAT REF LENGTH =       .20 M

                   ----- LONGITUDINAL -----     -- LATERAL DIRECTIONAL --
         ALPHA       CN        CM        CA        CY       CLN       CLL

        -18.00    -2.083     4.989      .079      .000      .000      .000
        -16.00    -1.875     4.316      .089      .000      .000      .000

Firefox file:///C:/Users/faisal/AppData/Local/Temp/tmpi6ycd4wy.html
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Figure 3.16: Axisymmetric body and mold line contour definition.

For every specified Mach number the program will produce four tables; each

for static, static derivative, longitudinal dynamic derivative, and lateral dynamic

derivative aerodynamic coefficients. Information regarding the flight conditions

and reference quantities is also provided in every table. The resulting coefficients

are presented in the tables as functions of the angle of attack as shown in Fig. 3.17

A more comprehensive sample of the output file is provided in Appendix B.

3.4 MATLAB and Simulink

MATLAB (Matrix Laboratory) is a numerical computing environment and pro-

gramming language from MathWorks, Inc. It was invented in the 1970s by mathe-

matician Cleve Moler and was initially released in 1984. Programming in MATLAB

can be done using scripting and interactive programming. Initialized variables are
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1         ***** THE USAF AUTOMATED MISSILE DATCOM * REV 3/99 *****     CASE   1
               AERODYNAMIC METHODS FOR MISSILE CONFIGURATIONS          PAGE   3
                                   RX200C                                   
                STATIC AERODYNAMICS FOR BODY-FIN SET 1 AND 2

       ******* FLIGHT CONDITIONS AND REFERENCE QUANTITIES *******
     MACH NO  =        .15                REYNOLDS NO = 3.478E+06 /M
     ALTITUDE =         .0 M         DYNAMIC PRESSURE =   1595.87 N/M**2
     SIDESLIP =        .00 DEG                   ROLL =       .00 DEG     
     REF AREA =       .129 M**2         MOMENT CENTER =     2.182 M
     REF LENGTH =      .20 M           LAT REF LENGTH =       .20 M

                   ----- LONGITUDINAL -----     -- LATERAL DIRECTIONAL --
         ALPHA       CN        CM        CA        CY       CLN       CLL

        -18.00    -2.083     4.989      .079      .000      .000      .000
        -16.00    -1.875     4.316      .089      .000      .000      .000
        -14.00    -1.657     3.695      .095      .000      .000      .000
        -12.00    -1.421     3.044      .097      .000      .000      .000
        -10.00    -1.166     2.360      .094      .000      .000      .000
         -8.00     -.890     1.645      .091      .000      .000      .000
         -6.00     -.633     1.084      .092      .000      .000      .000
         -4.00     -.393      .587      .096      .000      .000      .000
         -2.00     -.173      .160      .099      .000      .000      .000
           .00      .000      .000      .100      .000      .000      .000
          2.00      .173     -.160      .099      .000      .000      .000
          4.00      .393     -.587      .096      .000      .000      .000
          6.00      .633    -1.084      .092      .000      .000      .000
          8.00      .890    -1.645      .091      .000      .000      .000
         10.00     1.166    -2.360      .094      .000      .000      .000
         12.00     1.421    -3.044      .097      .000      .000      .000
         14.00     1.657    -3.695      .095      .000      .000      .000
         16.00     1.875    -4.316      .089      .000      .000      .000
         18.00     2.083    -4.989      .079      .000      .000      .000

Firefox file:///C:/Users/faisal/AppData/Local/Temp/tmpcphflocf.html
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Figure 3.17: Aerodynamic coefficient table, truncated for clarity.

stored in a variable pool called the workspace and can be saved to a MAT-file. Ad-

ditionally, Simulink, an extension of MATLAB, provides its users with graphical

programming capability using a block diagram approach.

Simulink offers various types of block diagrams from low-level to high-level,

application-specific blocks. Examples of the low-level blocks include algebraic math

operations, calculus, lookup tables, and signal manipulations. A great example of

a high-level, application-specific block category is The Aerospace Blockset which

provides functionalities such as vehicle dynamics and flight environment model-

ing. Combined with its capability to solve differential equations, Simulink can be

utilized to simulate a nonlinear aerospace system.

Users can use MATLAB functions from Simulink, and vice versa, and transfer

data between the two due to their tight integration. MATLAB 2018a version will

be used in this thesis.

3.4.1 Simulink Model

The rocket’s Simulink model represents the implementation of the equations that

have been derived in Chp. 2. Simulink solves the nonlinear differential equations
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of the rocket model using its built-in ordinary differential equation (ODE) solvers.

The available ODE solvers are:

• Discrete (no continuous states);

• ode8 (Dormand-Prince);

• ode5 (Dormand-Prince);

• ode4 (Runge-Kutta);

• ode3 (Bogackl-Shampine);

• ode2 (Heun);

• ode1 (Euler);

• ode14x (extrapolation).

The Simulink model consists of block diagrams that can be grouped into several

subsystems. The main subsystems for our rocket model are:

• Dynamical and kinematical equations;

• Wind disturbance;

• Environment;

• Mass characteristics;

• Forces and moments.

The 6-Degree-of-Freedom (6DoF) block that models the equations of motion

derived in Sec. 2.3 can be found in the top-most level of the rocket model. As

shown in Fig. 3.18, the 6DoF block takes forces, moments, and mass characteristics

as input and produces the states of the rocket as the output. The output states

can be inspected in the sensor subsystem before being relayed to the MATLAB

workspace.

The wind disturbance is modeled as a step function of the sidewind velocity

only (vw) (Fig. 3.19). In hindsight, this type of disturbance is too artificial when
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Figure 3.18: Top-most level of the Simulink model.
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Figure 3.19: Block diagrams of the wind disturbance model.
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compared to a real wind phenomenon. However, it provides a starting point to

intuitively understand the rocket’s behavior when exposed to other forms of dis-

turbance. A sidewind velocity disturbance is deliberately chosen as it is the only

wind velocity component that can excite the lateral-directional motion of the rocket

(as will be further discussed in Sec. 4.3.2).

The environment subsystem contains the atmosphere modeling and the relative

air properties (Fig. 3.20). The output of this subsystem is almost exclusively used

for aerodynamics calculation except for the ambient pressure that is used for the

effective thrust calculation. Shown in Fig. 3.21, the effective thrust force consists

of the raw thrust data from the lookup table and the ambient pressure contribution

from the atmosphere model.
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Figure 3.20: Environment subsystem.
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Figure 3.21: Thrust subsystem.

The block diagrams for Newton’s law of gravitation are given in Fig. 3.22. The

corresponding blocks for the gravitational force are shown Fig. 3.23 where the

matrix rotation from the inertial to body frame is also demonstrated.
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The aerodynamic coefficient calculations are divided into longitudinal (Fig.

3.24) and lateral-directional subsytems (Fig. 3.25 ).
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Figure 3.24: Longitudinal aerodynamic coefficients subsystem.

As shown in Fig. 3.26 and Fig. 3.27, the aerodynamic coefficients are presented

by lookup tables and are functions of the angle of attack, Mach number, and the

center of gravity position. The axial and normal force coefficients are multiplied

by -1 (-1 gain block) due to the difference in body coordinate system definitions

between Missile DATCOM (Fig. 3.6) and the 6DoF block (Fig. 2.10).

The contribution of the Coriolis moment is illustrated in Fig. 3.28. The mass

and moments of inertia are modeled with lookup tables in the mass characteristics

subsystem. Their time derivatives are given as a constant block since their values

do not change over time except for the time of burnout (represented by a switch

block in Fig. 3.29).
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Figure 3.25: Lateral-directional aerodynamic coefficients subsys-
tem.
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Figure 3.26: Longitudinal aerodynamic coefficients.

53/136



NUMERICAL INVESTIGATION OF MOMENTS OF INERTIA’S UNCERTAINTY

EFFECTS ON LAPAN RX-200C ROCKET

7
Cllp

6
Cllr

5
Clnp

4
Clnb

3
Cyb

2
Cyp

1
Cyr

8
Cllb

9
Clnr

3
mach

1
alpha

2
cg_x

3-D	T(u)u1

u2

u3

C_yr

3-D	T(u)u1

u2

u3

C_yp

3-D	T(u)u1

u2

u3

C_yb

3-D	T(u)u1

u2

u3

C_nb

3-D	T(u)u1

u2

u3

C_np

3-D	T(u)u1

u2

u3

C_lr

3-D	T(u)u1

u2

u3

C_lp

3-D	T(u)u1

u2

u3

C_lb

3-D	T(u)u1

u2

u3

C_nr

Figure 3.27: Lateral-directional aerodynamic coefficients.
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3.4.2 MATLAB Scripts

In this section, the general ideas of the major scripts used in this thesis are going

to be discussed. The full scripts are available in Appendix B.

DATCOM xcg Iterator

As stated in Sec. 3.3, the aerodynamic coefficients from Missile DATCOM are only

functions of the angle of attack and Mach number. Following the notions in Sec.

2.3.6, the aerodynamic coefficients are also functions of the center of gravity posi-

tion. Therefore, these coefficients need to be modified to account for the movement

of the center of gravity. The general workflow of the script is as follows:

1. Create Missile DATCOM input file (for005.dat);

2. Run Missile DATCOM;

3. Use MATLAB function datcomimport() to parse the output file (for006.dat);

4. Append the parsed output to an array;

5. Loop for the number of desired xcg points;

6. Save the array to a MAT-file.

The resulting aerodynamic coefficients will be in the form of m-by-n-by-o ma-

trices where m, n, and o are the number of data points of the angle of attack, Mach

number, and the center of gravity, respectively. 10 center of gravity points will be

used while the aerodynamic coefficients for the in-between center of gravity points

will be linearly interpolated.

Rocket Data Initialization

The necessary variables used by the Simulink model are initialized using MATLAB

scripts and saved to a MAT-file. Before every Simulink simulation, this MAT-file

needs to be loaded to populate the MATLAB workspace. These scripts can be

grouped into four categories:
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• Aerodynamic coefficients: initialize the aerodynamic coefficients from the

DATCOM xcg iterator script;

• Mass profile: initialize and estimate the mass, moments of inertia, and xcg ;

• Thrust profile: initialize thrust profile data from LAPAN that is stored in a

MAT-file;

• Initial condition: specify initial conditions for the position, velocity, attitude,

and attitude rates.

Monte Carlo Simulation

In this thesis, Monte Carlo simulations are performed by programmatically running

the Simulink Model through a MATLAB script. The main objective of the Monte

Carlo simulations is to analyze the change of the rocket’s dynamics when exposed

to moments of inertia uncertainty.

The uncertainty will only be applied to one of the moments of inertia per

simulation. This way, the individual influences of each moment of inertia on the

rocket’s dynamics can be isolated and compared. The moments of inertia profiles

under uncertainty are generated by the MATLAB script before every Simulink run.

These profiles are formulated using two approaches:

• Constant Uncertainty

Irf = N (In(0), σpIn(0))

Ire = N (In(tb), σpIn(tb))

dIr
dt

=
Ire − Irf

tb

Ir(t) = Irf +
dIr
dt
t

(3.1)

• Noise Uncertainty

Ir(t) = N (In(t), σpIn(t))

dIr
dt

=
Ir(tb)− Ir(0)

tb

(3.2)

where
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• In(t) ≜ Moments of inertia without uncertainty (nominal);

• Ir(t) ≜ Randomized moments of Inertia;

• Irf and Ire ≜ Randomized moments of inertia at full and empty mass, re-

spectively;

• N (µ, σ) ≜ Normal distribution function where µ and σ are the mean and

the standard devitation, respectively;

• σp ≜ Standard deviation percentage multiplier;

• tb ≜ Rocket motor burn time.

MATLAB’s built-in function, normrnd(), is used to represent the normal dis-

tribution function N . For both uncertainty types, the moments of inertia profile

I(t) and rate of moments of inertia dI
dt

under uncertainty are then mathematically

defined by

I(t) =

Ir(t), if 0 < t ≤ tb

Ir(tb), if t > tb

dIr
dt

=

dIr
dt
, if 0 < t ≤ tb

0, if t > tb

(3.3)

The noise profile is created by incrementally inputting each sample time (ts

0 < ts ≤ tb) into Ir(t) using the model’s fixed time step tstep as the increment.

Consequently, the noise frequency is constant and defined by

fn =
1

tstep
(3.4)

For the constant uncertainty, there are rare occasions where the randomized

value for the dry moments inertia will be larger than the wet moments of inertia

which is not realistic. Therefore, the randomising process is modified such that the

script would re-roll the randomized values if the previous statement is detected.
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Figure 3.30: Comparison between various moments of inertia pro-
files.

In addition, the function rng(’shuffle’) will be used to produce a random seed

based on the current time to make sure that the normal distribution function

outputs different values at every runs. The comparison between the nominal profile,

constant uncertainty, and noise uncertainty moments of inertia is shown in Fig.

3.30.
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CHAPTER 4

RESULTS AND DISCUSSIONS

4.1 Overview

The simulation results will be divided into two categories:

• Nominal simulation: with disturbance but no uncertainty;

• Monte Carlo, uncertainty simulation: with disturbance and uncertainty.

As mentioned in Sec. 3.4.1, the wind disturbance will be in the form of a step

function in sidewind velocity (vw). The behavior of this step disturbance is char-

acterized by:

• Starting step time: at t = 5 seconds;

• Step duration: 1 second;

• Step magnitude: 0, +1, +2, and +3 m/s

Therefore, there will be four nominal trajectories that will correspond to each

of the wind disturbances.

The parameters for the initial conditions are shown in Tab. 4.1. The ini-

tial translational velocity is defined as the rocket’s velocity just after leaving the

launcher as illustrated in Fig. 4.1. The Simulink ODE solver is set to automatic

for Simulink to choose with a fixed integration time step of 0.02 seconds. The

simulation would stop automatically if the altitude goes below zero.

4.2 Nominal Simulations

The nominal rocket trajectories for all four wind disturbances are shown in Fig.

4.2. In absence of any wind disturbances, the rocket follows a parabolic trajectory
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Figure 4.1: LAPAN RX-320 Rocket on its launcher (right) and
right before leaving the launcher (left) (Pusat Teknologi Roket ,

2022a).

State Variable Value Unit

Position [xe ye ze] [0 0 0] m
Velocity [us vs ws] [20 0 0] m/s
Attitude [ϕ θ ψ] [0 60 0] deg
Angular
rate

[p q r] [0 0 0] deg/s

Table 4.1: Initial conditions for all simulations.

without any displacements in the y-direction and achieved the largest maximum

range, and consequently also the largest final x-displacement, of 23.178 km. The

largest maximum altitude of 9.466 km and the largest final y-displacement of -

257.78 m are achieved when the rocket encounters a +3 m/s wind disturbance.

As summarized in Tab. 4.2, with the increase of the wind disturbance mag-

nitude, the maximum altitude increases while the maximum range and final x

position decrease. However, the rocket’s final y position does not necessarily fol-

low a linear pattern that is governed by the direction and magnitude of the wind

disturbance. A +3 m/s wind disturbance leads to a negative final y coordinate

whilst a +1 m/s wind disturbance causes a positive and larger final displacement

in y-direction than a +2 m/s wind disturbance.

The angle of attack trajectories under all wind disturbances exhibit a similar

profile. For all trajectories, the maximum angle of attack of about +4.6 deg occurs

right after the launch. In terms of the overall longitudinal stability, the rocket has

a tendency to attain and maintain the angle of attack close to zero. A noticeable
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Figure 4.2: 3D-trajectory comparison between different wind dis-
turbance magnitudes.

vw
Max. R
(km)

Max. H Final x
(km)

Final y
(m)H (km) t (s)

0 23.178 9.355 44.600 23.178 0.000
+1 23.136 9.423 44.920 23.135 193.190
+2 23.108 9.450 44.880 23.108 -1.028
+3 23.083 9.466 44.840 23.082 -257.780

Table 4.2: Trajectory summary of the nominal simulation.
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oscillation appears just before apogee in the form of a small and damped, long-

period oscillation as depicted in Fig. 4.3.

0 10 20 30 40 50 60 70 80 90 100

-1

0

1

2

3

4

5

0 m/s

+1 m/s

+2 m/s

+3 m/s

Figure 4.3: Angle of attack comparison between different wind
disturbance magnitudes, dashed line represents mean apogee time.

As shown in Fig. 4.4, the sideslip angle will remain zero without any wind

disturbances. As soon as a wind disturbance is introduced, a short-period sideslip

angle oscillation begins. The magnitude of this oscillation increases with wind

disturbance. All sideslip angle trajectories follow an identical pattern until right

before apogee at which point the oscillation for +1 m/s wind disturbance flips and

drifts away in a different direction than the rest. All sideslip trajectories do not

suggest a convergence to a single value. Although not showing a similar sign of

stability like the angle of attack, the rocket is able to keep the sideslip angles to

small values between ± 1 deg throughout the flight for all wind disturbances.

4.3 Simulation with Uncertainty

4.3.1 Uncertainty Overview

The results of the Monte Carlo simulations are used to compare the effects of each of

the moments of inertia and their uncertainty types. In total, there are 12 different
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Figure 4.4: Sideslip angle comparison between different wind dis-
turbance magnitudes, dashed line represents mean apogee time.

cases which correspond to the combinations of:

• 3 percentage standard deviations σp: 3%, 6%, and 10%;

• 4 sidewind (vw) disturbances: 0, +1, +2, and +3 m/s.

Taking into account the three moments of inertia (Ixx, Iyy, Izz) and two un-

certainty types (constant and noise), there will be a total of 72 different subcases

where each of these subcases will be run for 500 times.

The analysis will be focused on the distribution of the final position, maximum

range, and maximum altitude using kernel density estimations and normal distribu-

tion parameterizations. The kernel density estimation for univariate and bivariate

distribution is done in Python using the Seaborn library (Seaborn Documentation,

2022). The estimation utilizes Gaussian kernels and the bandwidth is selected us-

ing Scott’s rule. The stability of the rocket will also be briefly investigated by

comparing the angle of attack and sideslip angle trajectory profiles.

4.3.2 Special Case: Uncertainty with vw = 0 m/s

The simulations with 0 m/s sidewind disturbance can be treated as a special case

where the rocket is locked in the longitudinal motions only. Considering the initial
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conditions stated in Tab. 4.1, the lateral-directional equations from Eq. 2.50 and

Eq. 2.51 can be rewritten for the first simulation time step as

mv̇ = q∞SCY

Ixxṗ = q∞SlrefCl

Izz ṙ = q∞SlrefCn

(4.1)

Due to the rocket’s symmetry, the lateral-directional aerodynamic coefficients

will be zero at zero sideslip angle. Referring to Sec. 2.3.1, the sideslip angle will

remain at zero value since in this particular case both vs and vw are set to zero.

This is exactly the condition depicted in Fig. 4.4 for the trajectory without any

sidewind disturbances.

Thus, Eq. 4.2 can be further rewritten to

v̇ = 0

ṗ = 0

ṙ = 0

(4.2)

In other words, as long as there is no sidewind disturbance, no value of Ixx and

Izz will be able to change the rocket’s dynamics and no Iyy values will create any

change for the lateral-directional motions. Therefore, the analysis for this case can

be reduced where the primary focus will be the effects of Iyy uncertainty to the

longitudinal motions of the rocket without any sidewind disturbances.

The longitudinal lock can further be seen from Fig. 4.5 where the resulting final

positions are shown to lie solely in the x-axis. The distributions of the maximum

range are shown in Fig. 4.6. In this case, the maximum range exactly represents

the final x position. Compared to the density estimation for the maximum altitude

in Fig. 4.7, the distribution of the maximum range does not completely resemble

a normal distribution.

As displayed in Tab. 4.3, the averages for both uncertainty types differ only

slightly from the nominal result with the order of centimeters,. For both noise

and constant uncertainty, the spread of the final x positions grows larger as the
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Figure 4.5: Final xy position results for Iyy uncertainty with no
wind disturbance, yellow triangle indicates the nominal xy.
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Figure 4.6: Maximum range KDE plot for Iyy uncertainty with
no wind disturbance.
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Figure 4.7: Maximum altitude KDE plot for Iyy uncertainty with
no wind disturbance.
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standard deviation of the uncertainty gets larger. Although not that striking, the

constant uncertainty produces a larger spread for the maximum range and altitude.

Indicator
Mean
and

std. dev.

Nominal
Sim.

Iyy, σp (%)
Constant Unc. Noise Unc.

3 6 10 3 6 10

Max. R
µ (km) 23.1780 23.1778 23.1776 23.1775 23.1780 23.1779 23.1776
σ (m) 0 0.7 0.9 1.1 0.4 0.7 0.9

Max. H
µ (km) 9.3545 9.3546 9.3544 9.3545 9.3545 9.3544 9.3544
σ (m) 0 0.8 1.5 2.5 0.4 0.7 1.3

Table 4.3: Average and standard deviation summary for Iyy un-
certainty with vw = 0 m/s.

All angle of attack trajectories shown in Fig. 4.8 resemble a similar stability

profile to the nominal angle of attack trajectory. The rocket tends to minimize the

angle of attack close to zero while having the maximum angle of attack of about

+4.7 deg right after launch.

Figure 4.8: Angle of attack comparison for Iyy uncertainty with
vw = 0 m/s, dashed line represents approximated apogee timings.

4.3.3 Case 1: Constant Unc. and vw = +1 m/s

For all distributions, the nominal impact point is shown to be inside the highest

probability density areas as displayed in Fig. 4.9. Similar impact point clusters
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Figure 4.9: Final xy position results for constant unc. with vw =
+1 m/s, yellow triangle indicates the nominal final xy.

can be seen from Iyy and Izz uncertainties. This can further be supported by their

univariate probability density estimates shown in Fig. 4.10 and Fig. 4.11.

Tab. 4.4 indicates that the mean and standard deviations of all indicators for

Iyy and Izz uncertainties with respect to each σp have similar values. Compared

to the nominal value, the final x averages across all uncertainties differ only by a

small amount with the largest deviation of (+)6 meters occurring on 10% Ixx and

Izz uncertainty. The same thing can also be said for the maximum altitude with the

largest deviation of (+)4 meters occurring on 10% Ixx uncertainty. As illustrated

in Fig. 4.12, the distributions of the maximum altitude show a close resemblance

to a normal distribution.

On contrary, the increase in σp leads to the decrease of the averages of the final

y value. This decrease is more evident with the Ixx uncertainties. The standard

deviation for all of the indicators increases as σp increases. Relative to the Iyy and

Izz uncertainties, the uncertainties in Ixx create the largest standard deviations in

all of the indicators; almost doubling the values with the same σp uncertainty.

All of the angle of attack trajectories follow a stability profile tendency similar
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Figure 4.10: Final x density estimates from constant unc. and vw
= +1 m/s case.
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Figure 4.11: Final y density estimates from constant unc. and vw
= +1 m/s case.
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Indicator
Mean
and

std. dev.

Nominal
Sim.

Constant Uncertainty
Ixx, σp (%) Iyy, σp (%) Izz, σp (%)

3 6 10 3 6 10 3 6 10

Final x
µ (km) 23.135 23.140 23.140 23.141 23.136 23.140 23.140 23.135 23.140 23.141
σ (m) 0 13 19 30 3 8 15 4 8 14

Final y
µ (m) 193 189 178 152 192 190 183 193 192 183
σ (m) 0 13 29 50 8 18 34 8 17 32

Max. R
µ (km) 23.136 23.140 23.142 23.141 23.136 23.139 23.141 23.136 23.140 23.141
σ (m) 0 13 19 30 3 7 14 4 8 14

Max. H
µ (km) 9.423 9.423 9.425 9.427 9.423 9.423 9.423 9.423 9.424 9.423
σ (m) 0 11 20 30 3 5 10 3 5 19

Table 4.4: Average and standard deviation summary from con-
stant unc. and vw = +1 m/s case.
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Figure 4.12: Max. altitude density estimates from constant unc.
and vw = +1 m/s case.

to the nominal simulation while having the approximate maximum angle of attack

of about +4.7 deg right after launch as presented in Fig. 4.13. Thereafter, the

angle of attack is maintained close to zero. For all of the uncertainties, there is a

slight noticeable oscillation after reaching apogee.

As can be seen in Fig. 4.14, the change in the sideslip angle’s oscillation phase

and amplitude grows in magnitude as σp increases. Particularly with σp = 10%,

some trajectory outliers can be identified as their trajectories flip around apogee.
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Figure 4.13: Angle of attack comparison from constant unc. and
vw = +1 m/s case, dashed line represents the approximated apogee

timings.

Across moments of inertia, the trajectories with Iyy and Izz uncertainties show a

similar profile while the variations in the oscillation phase and amplitude is even

more distinct with the uncertainty in Ixx. For all trajectories, no clear sign of

asymptotic stability is shown. However, the sideslip angle is kept between ±1 deg

throughout the whole flight.

Figure 4.14: Sideslip angle comparison from constant unc. and
vw = +1 m/s case, dashed line represents approximated apogee

timings.
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4.3.4 Case 2: Constant Unc. and vw = +2 m/s
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Figure 4.15: Final xy position results for constant unc. with vw
= +2 m/s, yellow triangle indicates the nominal final xy.

The nominal impact point is shown to be inside the highest probability den-

sity areas except for the Ixx uncertainties as displayed in Fig. 4.15. The multi-

modalities in the final x density for Ixx uncertainties can better be seen from Fig.

4.16. However, there is no multi-modality observed for the final y density as shown

in Fig. 4.17.

Tab. 4.5 indicates that the mean and standard deviations of all indicators for

Iyy and Izz uncertainties with respect to each σp display similar values. Compared

to the nominal value, the final x averages across all uncertainties differ only by a

small amount with the largest deviation of (+)7 meters occurring on 6% and 10%

Ixx uncertainties. The same thing can also be said for the maximum altitude with

the largest deviation of (-)3 meters occurring on 10% Ixx uncertainty. As illustrated

in Fig. 4.18, the distributions of the maximum altitude show a resemblance to a

normal distribution.

On the contrary, the increase in σp leads to the decrease of the averages of

the final y value. This decrease is more evident with the Ixx uncertainties. The
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Figure 4.16: Final x density estimates from constant unc. and vw
= +2 m/s case.
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Figure 4.17: Final y density estimates from constant unc. and vw
= +2 m/s case.
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Indicator
Mean
and

std. dev.

Nominal
Sim.

Constant Uncertainty
Ixx, σp (%) Iyy, σp (%) Izz, σp (%)

3 6 10 3 6 10 3 6 10

Final x
µ (km) 23.108 23.109 23.115 23.115 23.108 23.107 23.108 23.109 23.108 23.109
σ (m) 0 12 14 20 4 8 10 5 8 12

Final y
µ (m) -1 -10 -24 -32 -2 -5 -9 -2 -3 -6
σ (m) 0 18 54 95 7 15 25 7 14 23

Max. R
µ (km) 23.108 23.109 23.115 23.115 23.108 23.107 23.108 23.109 23.108 23.109
σ (m) 0 12 14 19 4 8 10 5 8 12

Max. H
µ (km) 9.450 9.449 9.448 9.447 9.449 9.449 9.449 9.450 9.450 9.450
σ (m) 0 1 5 17 2 3 6 1 2 4

Table 4.5: Average and standard deviation summary from con-
stant unc. and vw = +2 m/s case.

standard deviation for all of the indicators increases as σp increases. Relative to

the Iyy and Izz uncertainties, the standard deviations of Ixx uncertainties almost

have double the values with the same σp uncertainty for all indicators except for

the final y values where it is about triple the values.
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Figure 4.18: Max. altitude density estimates from constant unc.
and vw = +2 m/s case.

All angle of attack trajectories show a stability tendency similar to the nominal

simulation. The approximate maximum angle of attack of about +4.7 deg right
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after launch as presented in Fig. 4.19. The angle of attack trajectories are shown

to be close to zero for the rest of the flight. For all of the uncertainties, a slight

oscillation is noticeable after reaching apogee.

Figure 4.19: Angle of attack comparison from constant unc. and
vw = +2 m/s case, dashed line represents the approximated apogee

timings.

It can be seen from Fig. 4.20 that for the sideslip trajectories the change in the

oscillation phase and amplitude grows in magnitude as σp increases. Particularly

with σp = 10%, some trajectory outliers can be identified as their trajectories

drift to the positive region around apogee. The outliers are more profound with

the Ixx uncertainty. Across moments of inertia, the trajectories with Iyy and Izz

uncertainties share similar profiles. For all trajectories, no clear sign of asymptotic

stability is shown. However, the sideslip angle is kept between -1 deg < β < 1 deg

throughout the whole flight.

4.3.5 Case 3: Constant Unc. and vw = +3 m/s

For all distributions, the nominal impact point is shown to be inside the highest

probability density areas as displayed in Fig. 4.21. As shown in Fig. 4.22 and

Fig. 4.23, the distribution of the impact points with Ixx uncertainties display a

sign of bimodality as σp increases. The univariate density estimates suggest that

the impact points of Iyy and zz uncertainties share similar profiles and are normally
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Figure 4.20: Sideslip angle comparison from constant unc. and
vw = +2 m/s case, dashed line represents approximated apogee

timings.
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Figure 4.21: Final xy position results for constant unc. with vw
= +3 m/s, yellow triangle indicates the nominal final xy.
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distributed. As illustrated in Fig. 4.24, all distributions of the maximum altitude

show a close resemblance to a normal distribution.
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Figure 4.22: Final x density estimates from constant unc. and vw
= +3 m/s case.

Tab. 4.6 also indicates that the mean and standard deviations of all indicators

for Iyy and Izz uncertainties with respect to each σp display similar values. All

indicators’ averages from Iyy and Izz uncertainties differ only by a small amount.

In contrast, the Ixx uncertainties create the largest average difference on all of the

indicators.

The increase in σp leads to the decrease of the averages of the final y value.

This decrease is more evident with the Ixx uncertainties. The standard deviation

for all of the indicators increases as σp increases. Relative to the Iyy and Izz

uncertainties, the uncertainties in Ixx create the largest standard deviations in all

of the indicators; about 2 times as much on the final x, 4 times on the final y, and

8 times on the maximum altitude.

All angle of attack trajectories follow a stability profile tendency similar to

the nominal simulation while having the approximate maximum angle of attack of

about +4.7 deg right after launch as presented in Fig. 4.25. Thereafter, the angle

76/136



NUMERICAL INVESTIGATION OF MOMENTS OF INERTIA’S UNCERTAINTY

EFFECTS ON LAPAN RX-200C ROCKET

−400 −200
0.000

0.002

0.004

0.006
D

en
si

ty

Constant Ixx, σp = 3%

−500 −250 0
0.000

0.001

0.002

0.003

0.004
Constant Ixx, σp = 6%

−500 0
0.000

0.001

0.002

0.003

Constant Ixx, σp = 10%

−300 −250
0.00

0.01

0.02

D
en

si
ty

Constant Iyy, σp = 3%

−300 −200
0.000

0.005

0.010

0.015

Constant Iyy, σp = 6%

−400 −200
0.000

0.002

0.004

0.006

0.008

Constant Iyy, σp = 10%

−300 −250

Final y (m)

0.00

0.01

0.02

0.03

D
en

si
ty

Constant Izz, σp = 3%

−300 −200

Final y (m)

0.000

0.005

0.010

0.015

Constant Izz, σp = 6%

−400 −200

Final y (m)

0.0000

0.0025

0.0050

0.0075

0.0100

Constant Izz, σp = 10%

Figure 4.23: Final y density estimates from constant unc. and vw
= +3 m/s case.

Indicator
Mean
and

std. dev.

Nominal
Sim.

Constant Uncertainty
Ixx, σp (%) Iyy, σp (%) Izz, σp (%)

3 6 10 3 6 10 3 6 10

Final x
µ (km) 23.082 23.076 23.071 23.069 23.081 23.081 23.079 23.081 23.080 23.080
σ (m) 0 16 27 34 5 11 17 6 11 16

Final y
µ (m) -258 -264 -258 -234 -258 -258 -261 -258 -259 -259
σ (m) 0 61 100 123 13 27 45 11 22 38

Max. R
µ (km) 23.083 23.078 23.073 23.070 23.083 23.082 23.080 23.083 23.081 23.082
σ (m) 0 16 26 33 5 10 17 5 10 16

Max. H
µ (km) 9.466 9.469 9.478 9.488 9.466 9.466 9.466 9.465 9.466 9.466
σ (m) 0 16 41 53 2 4 7 2 4 7

Table 4.6: Average and standard deviation summary from con-
stant unc. and vw = +3 m/s case.
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Figure 4.24: Max. altitude density estimates from constant unc.
and vw = +3 m/s case.

of attack is maintained close to zero. For all of the uncertainties, there is a slight

noticeable oscillation after reaching apogee.

Figure 4.25: Angle of attack comparison from constant unc. and
vw = +3 m/s case, dashed line represents the approximated apogee

timings.

As can be seen in Fig. 4.26 that for the sideslip angle trajectories the change
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in the oscillation phase and amplitude grows in magnitude as σp increases. Partic-

ularly for 6% and 10% Ixx uncertainty, some trajectory outliers can be identified

as their trajectories flip to the positive region approximately at time t = 20 s. The

number of outliers grows with σp. Across moments of inertia, the trajectories with

Iyy and Izz uncertainties show a similar profile while the variations in the oscillation

phase and amplitude are even more distinct with the uncertainty in Ixx. For all

trajectories, no clear sign of asymptotic stability is shown. However, the sideslip

angle is kept between -1 deg < β < 1 deg throughout the whole flight.

Figure 4.26: Sideslip angle comparison from constant unc. and
vw = +3 m/s case, dashed line represents approximated apogee

timings.

4.3.6 Case 4: Noise Unc. and vw = +1 m/s

Over all distributions, the nominal impact point is shown to be located in the

highest probability density areas as shown in Fig. 4.27. Impact points for Iyy and

Izz uncertainties show a similar cluster with the same σp values. Their univariate

probability density estimates further supported the previous statement as shown

in Fig. 4.28 and Fig. 4.29.

From Tab. 4.7 it is also evident that across the same σp the mean and standard

deviations of all indicators for Iyy and Izz uncertainties have similar values. Com-

pared to the nominal value, the final x averages across all uncertainties differ only

by a small amount with the largest deviation of (+)6 meters occurring on 10% Izz
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Figure 4.27: Final xy position results for noise unc. with vw =
+1 m/s, yellow triangle indicates the nominal final xy.
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Figure 4.28: Final x density estimates from noise unc. and vw =
+1 m/s case.
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Figure 4.29: Final y density estimates from noise unc. and vw =
+1 m/s case.

uncertainty. The same thing can also be said for the maximum altitude with the

largest deviation of (+)4 meters occurring on 10% Ixx uncertainty. As illustrated

in Fig. 4.30, the distributions of the maximum altitude show a close resemblance

to a normal distribution.

Indicator
Mean
and

std. dev.

Nominal
Sim.

Noise Uncertainty
Ixx, σp (%) Iyy, σp (%) Izz, σp (%)

3 6 10 3 6 10 3 6 10

Final x
µ (km) 23.135 23.134 23.130 23.137 23.136 23.140 23.141 23.135 23.140 23.141
σ (m) 0 12 19 21 4 9 16 4 9 16

Final y
µ (m) 193 192 187 176 194 189 181 194 189 181
σ (m) 0 9 19 32 9 18 32 8 17 34

Max. R
µ (km) 23.136 23.135 23.135 23.137 23.137 23.141 23.142 23.136 23.141 23.142
σ (m) 0 12 19 21 4 9 16 4 9 16

Max. H
µ (km) 9.423 9.424 9.426 9.427 9.424 9.423 9.423 9.424 9.423 9.423
σ (m) 0 5 12 19 4 7 11 3 6 11

Table 4.7: Average and standard deviation summary from noise
unc. and vw = +1 m/s case.

Conversely, the increase in σp leads to the decrease of the averages of the fi-

nal y value. This decrease is more noticeable with the Ixx uncertainties. The
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standard deviation for all of the indicators increases as σp increases. Relative to

the Iyy and Izz uncertainties, the uncertainties in Ixx create the largest standard

deviations in all of the indicators except for the final y. With the same σp, the

standard deviations of the final y coordinate across different moments of inertia

have approximately the same values.

9.40 9.42 9.44
0

20

40

60

D
en

si
ty

Noise Ixx, σp = 3%

9.40 9.45
0

10

20

30

Noise Ixx, σp = 6%

9.40 9.45 9.50
0

5

10

15

20

Noise Ixx, σp = 10%

9.41 9.42 9.43
0

25

50

75

100

D
en

si
ty

Noise Iyy, σp = 3%

9.40 9.42 9.44
0

20

40

60
Noise Iyy, σp = 6%

9.400 9.425 9.450
0

10

20

30

Noise Iyy, σp = 10%

9.42 9.43

Max. H (km)

0

50

100

D
en

si
ty

Noise Izz, σp = 3%

9.40 9.42 9.44

Max. H (km)

0

20

40

60

Noise Izz, σp = 6%

9.400 9.425 9.450

Max. H (km)

0

10

20

30

Noise Izz, σp = 10%

Figure 4.30: Max. altitude density estimates from noise unc. and
vw = +1 m/s case.

The angle of attack profiles for all trajectories show a stability tendency similar

to the nominal simulation. The approximate maximum angle of attack of about

+4.7 deg right after launch as presented in Fig. 4.31. The angle of attack tra-

jectories are shown to be close to zero for the rest of the flight. For all of the

uncertainties, a slight oscillation is noticeable after reaching apogee.

It is evident from Fig. 4.32 that for the sideslip trajectories the change in the

oscillation phase and amplitude grows in magnitude as σp increases. Particularly for

Iyy and Izz uncertainties with σp = 10%, some trajectory outliers can be identified

as their trajectories drift to the negative region around apogee. Across moments of

inertia, the trajectories with Iyy and Izz uncertainties share similar profiles. For all
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Figure 4.31: Angle of attack comparison from noise unc. and vw
= +1 m/s case, dashed line represents the approximated apogee

timings.

trajectories, no clear sign of asymptotic stability is shown. However, the sideslip

angle is kept between -1 deg < β < 1 deg throughout the whole flight.

Figure 4.32: Sideslip angle comparison from noise unc. and vw =
+1 m/s case, dashed line represents approximated apogee timings.

4.3.7 Case 5: Noise Unc. and vw = +2 m/s

The impact point distributions are shown in Fig. 4.33. It can be seen that the

impact points for Iyy and Izz uncertainties show similar clusters with the same

σp values. Multiple high-density spots can also be observed from some of the
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Figure 4.33: Final xy position results for noise unc. with vw =
+2 m/s, yellow triangle indicates the nominal final xy.

distributions. These characteristics can be further seen by the multi-modalities

in the univariate final x density estimation shown in Fig. 4.34. However, the

univariate final y density estimations (Fig. 4.35) show a close resemblance to a

normal distribution.

Tab. 4.8 indicates that the mean and standard deviations of all indicators for

Iyy and Izz uncertainties with respect to each σp display similar values. Compared

to the nominal value, the final x averages across all uncertainties differ only by

a small amount with the largest deviation of (+)5 meters occurring on 10% Ixx

uncertainty. The same thing can also be said for the maximum altitude with the

largest deviation of (+)1 meter over multiple uncertainties. As illustrated in Fig.

4.36, the distributions of the maximum altitude show a close resemblance to a

normal distribution.

On contrary, the increase in σp leads to the decrease of the averages of the final

y value. This decrease is more evident with the Ixx uncertainties. The standard

deviation for all of the indicators increases as σp increases. Relative to the Iyy and

Izz uncertainties, the uncertainties in Ixx create the largest standard deviations in
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Figure 4.34: Final x density estimates from noise unc. and vw =
+2 m/s case.
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Figure 4.35: Final y density estimates from noise unc. and vw =
+2 m/s case.
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Indicator
Mean
and

std. dev.

Nominal
Sim.

Noise Uncertainty
Ixx, σp (%) Iyy, σp (%) Izz, σp (%)

3 6 10 3 6 10 3 6 10

Final x
µ (km) 23.108 23.108 23.110 23.113 23.108 23.108 23.108 23.108 23.108 23.111
σ (m) 0 10 13 15 4 8 11 5 9 13

Final y
µ (m) -1 -6 -15 -34 -2 -4 -7 -2 -4 -7
σ (m) 0 12 26 43 4 9 16 5 11 19

Max. R
µ (km) 23.108 23.108 23.110 23.113 23.108 23.108 23.108 23.108 23.108 23.111
σ (m) 0 10 13 15 4 8 11 5 9 13

Max. H
µ (km) 9.450 9.449 9.449 9.449 9.449 9.449 9.449 9.449 9.449 9.450
σ (m) 0 3 6 11 1 2 4 1 2 4

Table 4.8: Average and standard deviation summary from noise
unc. and vw = +2 m/s case.

all of the indicators. The stark difference of the Ixx uncertainties can be seen from

its final y standard deviations; about triple the values with the same σp uncertainty

when compared to Iyy and Izz uncertainties.

9.44 9.45 9.46
0

50

100

D
en

si
ty

Noise Ixx, σp = 3%

9.425 9.450 9.475
0

20

40

60

Noise Ixx, σp = 6%

9.45 9.50
0

10

20

30

40

Noise Ixx, σp = 10%

9.445 9.450
0

100

200

300

D
en

si
ty

Noise Iyy, σp = 3%

9.44 9.45 9.46
0

50

100

150

Noise Iyy, σp = 6%

9.42 9.44 9.46
0

25

50

75

100

Noise Iyy, σp = 10%

9.4475 9.4500 9.4525

Max. H (km)

0

100

200

300

400

D
en

si
ty

Noise Izz, σp = 3%

9.44 9.45

Max. H (km)

0

50

100

150

200

Noise Izz, σp = 6%

9.44 9.46

Max. H (km)

0

25

50

75

100

Noise Izz, σp = 10%

Figure 4.36: Max. altitude density estimates from noise unc. and
vw = +2 m/s case.

All angle of attack trajectories show a stability tendency similar to the nominal

simulation. The approximate maximum angle of attack of about +4.7 deg right

after launch as presented in Fig. 4.37. The angle of attack trajectories are shown
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to be close to zero for the rest of the flight. For all of the uncertainties, a slight

oscillation is noticeable after reaching apogee.

Figure 4.37: Angle of attack comparison from noise unc. and vw
= +2 m/s case, dashed line represents the approximated apogee

timings.

It is evident from Fig. 4.38 that for the sideslip trajectories the change in the

oscillation phase and amplitude grows in magnitude as σp increases. Particularly

with σp = 10%, some trajectory outliers can be identified as their trajectories drift

to the positive region around apogee except for the Ixx uncertainty. However, no

trajectories for the Ixx uncertainties drift to the negative region. Across moments

of inertia, the trajectories with Iyy and Izz uncertainties share similar profiles. For

all trajectories, no clear sign of asymptotic stability is shown. However, the sideslip

angle is kept between ±1 deg throughout the whole flight.

4.3.8 Case 6: Noise Unc. and vw = +3 m/s

For all distributions, the nominal impact point is shown to be located in the highest

probability density areas as shown in Fig. 4.39. Impact points for Iyy and Izz

uncertainties show a similar cluster with the same σp values. Their univariate

probability density estimates further supported the previous statement as shown

in Fig. 4.40 and Fig. 4.41. As illustrated in Fig. 4.42, the distributions of the

maximum altitude show a close resemblance to a normal distribution.
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Figure 4.38: Sideslip angle comparison from noise unc. and vw =
+2 m/s case, dashed line represents approximated apogee timings.
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Figure 4.39: Final xy position results for noise unc. with vw =
+3 m/s, yellow triangle indicates the nominal final xy.
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Figure 4.40: Final x density estimates from noise unc. and vw =
+3 m/s case.
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Figure 4.41: Final y density estimates from noise unc. and vw =
+3 m/s case.
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From Tab. 4.9 it is also evident that across the same σp the mean and standard

deviations of all indicators for Iyy and Izz uncertainties have similar values. All

indicators’ averages from Iyy and Izz uncertainties differ only by a small amount.

In contrast, the Ixx uncertainties create the largest average difference on all of the

indicators.

Indicator
Mean
and

std. dev.

Nominal
Sim.

Noise Uncertainty
Ixx, σp (%) Iyy, σp (%) Izz, σp (%)

3 6 10 3 6 10 3 6 10

Final x
µ (km) 23.082 23.079 23.077 23.075 23.081 23.080 23.079 23.080 23.080 23.079
σ (m) 0 13 20 24 3 6 10 5 8 13

Final y
µ (m) -258 -265 -277 -294 -258 -259 -259 -258 -259 -261
σ (m) 0 28 57 84 7 15 24 10 18 33

Max. R
µ (km) 23.083 23.080 23.079 23.077 23.082 23.081 23.081 23.082 23.082 23.081
σ (m) 0 13 20 23 3 6 10 4 8 13

Max. H
µ (km) 9.466 9.467 9.470 9.477 9.466 9.466 9.466 9.466 9.466 9.466
σ (m) 0 5 13 25 2 3 5 2 4 6

Table 4.9: Average and standard deviation summary from noise
unc. and vw = +3 m/s case.

The increase in σp leads to the decrease of the averages of the final y value.

This decrease is more evident with the Ixx uncertainties. The standard deviation

for all of the indicators increases as σp increases. Relative to the Iyy and Izz

uncertainties, the uncertainties in Ixx create the largest standard deviations in all

of the indicators; about 3 times as much on the final x, 4 times on the final y, and

3 times on the maximum altitude.

All angle of attack trajectories follow a stability profile tendency similar to

the nominal simulation while having the approximate maximum angle of attack of

about +4.7 deg right after launch as presented in Fig. 4.43. Thereafter, the angle

of attack is maintained close to zero. For all of the uncertainties, there is a slight

noticeable oscillation after reaching apogee.

As can be seen in Fig. 4.44 that for the sideslip angle trajectories the change

in the oscillation phase and amplitude grows in magnitude as σp increases. Across

moments of inertia, the trajectories with Iyy and Izz uncertainties show a similar

profile while the variations in the oscillation phase and amplitude are even more

distinct with the uncertainty in Ixx. For all trajectories, no clear sign of asymptotic

stability is shown. However, the sideslip angle is kept between -1 deg < β < 1 deg

throughout the whole flight.
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Figure 4.42: Max. altitude density estimates from noise unc. and
vw = +3 m/s case.

Figure 4.43: Angle of attack comparison from noise unc. and vw
= +3 m/s case, dashed line represents the approximated apogee

timings.
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Figure 4.44: Sideslip angle comparison from noise unc. and vw =
+3 m/s case, dashed line represents approximated apogee timings.

4.3.9 Case 7: 10,000 Runs, Constant Unc. and vw = +2

m/s
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Figure 4.45: Final xy position results for constant unc. with vw
= +2 m/s and 10,000 runs, yellow triangle indicates the nominal

final xy.
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From Fig. 4.45 it is evident that similar clusters of impact points can be seen

from Iyy and Izz. The nominal impact point is shown to be inside the highest

probability density areas except for the Ixx uncertainties. The multi-modalities in

the final x density for Ixx shown in Fig. 4.46 can be seen more profound when

compared to the same case with 500 runs (Fig. 4.16). However, there is still no

multi-modality observed for the final y density as shown in Fig. 4.47.
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Figure 4.46: Final x density estimates from constant unc. and vw
= +2 m/s case with 10,000 runs.

Tab. 4.10 displays similar values when compared to the results of the 500

runs (Tab. 4.5). The mean and standard deviations of all indicators for Iyy and

Izz uncertainties with respect to each σp display similar values. Compared to the

nominal value, the final x averages across all uncertainties differ only by a small

amount with the largest deviation of (+)7 meters occurring on 6% and 10% Ixx

uncertainties. The same thing can also be said for the maximum altitude with

the largest deviation of (-)2 meters occurring on 6% and 10% Ixx uncertainties.

As illustrated in Fig. 4.48, the distributions of the maximum altitude show a

resemblance to a normal distribution.
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Figure 4.47: Final y density estimates from constant unc. and vw
= +2 m/s case with 10,000 runs.

Indicator
Mean
and

std. dev.

Nominal
Sim.

Constant Uncertainty
Ixx, σp (%) Iyy, σp (%) Izz, σp (%)

3 6 10 3 6 10 3 6 10

Final x
µ (km) 23.108 23.109 23.115 23.115 23.108 23.108 23.108 23.108 23.108 23.108
σ (m) 0 11 14 20 4 8 10 5 9 11

Final y
µ (m) -1 -10 -23 -38 -2 -3 -6 -2 -4 -7
σ (m) 0 19 49 98 7 15 25 7 14 24

Max. R
µ (km) 23.108 23.110 23.115 23.115 23.108 23.108 23.108 23.108 23.108 23.108
σ (m) 0 11 14 20 4 8 10 5 9 11

Max. H
µ (km) 9.450 9.449 9.448 9.448 9.450 9.450 9.450 9.450 9.450 9.450
σ (m) 0 1 4 18 2 3 6 1 2 4

Table 4.10: Average and standard deviation summary from con-
stant unc. and vw = +2 m/s case with 10,000 runs.
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The increase in σp leads to the decrease of the averages of the final y value. This

decrease is more evident with the Ixx uncertainties. The standard deviation for all

of the indicators increases as σp increases. Relative to the Iyy and Izz uncertainties,

the standard deviations of Ixx uncertainties have about double the values with the

same σp uncertainty for all indicators except for the final y values where it is about

triple the values.
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Figure 4.48: Max. altitude density estimates from constant unc.
and vw = +2 m/s case with 10,000 runs.

All angle of attack trajectories show a stability tendency similar to the nominal

simulation. The approximate maximum angle of attack of about +4.7 deg right

after launch as presented in Fig. 4.49. The angle of attack trajectories are shown

to be close to zero for the rest of the flight. For all of the uncertainties, a slight

oscillation is noticeable after reaching apogee.

It can be seen from Fig. 4.50 that for the sideslip trajectories the change in the

oscillation phase and amplitude grows in magnitude as σp increases. Particularly

with σp = 10%, some trajectory outliers can be identified as their trajectories

drift to the positive region around apogee. The outliers are more profound with

the Ixx uncertainty. The number of outliers has increased due to the increased
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Figure 4.49: Angle of attack comparison from constant unc. and
vw = +2 m/s case with 10,000 runs, dashed line represents the

approximated apogee timings.

number of simulations but the trajectories are still similar to the 500 runs (Fig.

4.20). However, there are now some trajectories that start to drift to the positive

direction right after burnout. Across moments of inertia, the trajectories with Iyy

and Izz uncertainties share similar profiles. For all trajectories, no clear sign of

asymptotic stability is shown. However, the sideslip angle is kept between -1 deg

< β < 1 deg throughout the whole flight.

4.3.10 Case 8: 10,000 Runs, Noise Unc. and vw = +2 m/s

From Fig. 4.51 similar clusters of impact points can be seen from Iyy and Izz. The

nominal impact point is shown to be inside the highest probability density areas

except for the 6% and 10% Ixx uncertainties. From Fig. 4.52, multi-modalities can

be seen more profound in the final x density when compared to the same case with

500 runs (Fig. 4.34). However, there is still no multi-modality observed for the

final y density as shown in Fig. 4.53.
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Figure 4.50: Sideslip angle comparison from constant unc. and
vw = +2 m/s case with 10,000 runs, dashed line represents approx-

imated apogee timings.
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Figure 4.51: Final xy position results for noise unc. with vw =
+2 m/s and 10,000 runs, yellow triangle indicates the nominal final

xy.
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Figure 4.52: Final x density estimates from noise unc. and vw =
+2 m/s case with 10,000 runs.
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Figure 4.53: Final y density estimates from noise unc. and vw =
+2 m/s case with 10,000 runs.

Tab. 4.11 displays similar values when compared to the results of the 500

runs (Tab. 4.8). The mean and standard deviations of all indicators for Iyy and

Izz uncertainties with respect to each σp display similar values. Compared to the

nominal value, the final x averages across all uncertainties differ only by a small

amount with the largest deviation of (+)5 meters occurring on 10% and 10% Ixx

uncertainties. The same thing can also be said for the maximum altitude with

the largest deviation of (-)1 for all uncertainties. As illustrated in Fig. 4.54, the

distributions of the maximum altitude show a resemblance to a normal distribution.

The increase in σp leads to the decrease of the averages of the final y value. This

decrease is more evident with the Ixx uncertainties. The standard deviation for all

of the indicators increases as σp increases. Relative to the Iyy and Izz uncertainties,

the standard deviations of Ixx uncertainties have about 1.5 times the values with

the same σp uncertainty for all indicators except for the final y values where it is

about double the values.

All angle of attack trajectories show a stability tendency similar to the nominal

simulation. The approximate maximum angle of attack of about +4.7 deg right
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Indicator
Mean
and

std. dev.

Nominal
Sim.

Noise Uncertainty
Ixx, σp (%) Iyy, σp (%) Izz, σp (%)

3 6 10 3 6 10 3 6 10

Final x
µ (km) 23.108 23.109 23.110 23.113 23.108 23.108 23.109 23.108 23.108 23.110
σ (m) 0 9 13 15 4 8 11 5 9 12

Final y
µ (m) -1 -5 -14 -30 -2 -4 -6 -2 -4 -8
σ (m) 0 12 25 40 4 10 16 5 11 19

Max. R
µ (km) 23.108 23.109 23.110 23.113 23.108 23.108 23.109 23.108 23.108 23.110
σ (m) 0 9 13 15 4 8 11 5 9 12

Max. H
µ (km) 9.450 9.449 9.449 9.449 9.449 9.449 9.449 9.449 9.449 9.449
σ (m) 0 3 6 11 1 2 5 1 2 4

Table 4.11: Average and standard deviation summary from noise
unc. and vw = +2 m/s case with 10,000 runs.
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Figure 4.54: Max. altitude density estimates from noise unc. and
vw = +2 m/s case with 10,000 runs.
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after launch as presented in Fig. 4.55. The angle of attack trajectories are shown

to be close to zero for the rest of the flight. For all of the uncertainties, a slight

oscillation is noticeable after reaching apogee.

Figure 4.55: Angle of attack comparison from noise unc. and
vw = +2 m/s case with 10,000 runs, dashed line represents the

approximated apogee timings.

It can be seen from Fig. 4.56 that for the sideslip trajectories the change in the

oscillation phase and amplitude grows in magnitude as σp increases. Particularly

with 10% Iyy and Izz uncertainties, some trajectory outliers can be identified as

their trajectories drift to the positive region around apogee. The number of outliers

has increased due to the increased number of simulations but the trajectories still

similar to the 500 runs (Fig. 4.38). Across moments of inertia, the trajectories

with Iyy and Izz uncertainties share similar profiles. For all trajectories, no clear

sign of asymptotic stability is shown. However, the sideslip angle is kept between

-1 deg < β < 1 deg throughout the whole flight.
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Figure 4.56: Sideslip angle comparison from noise unc. and vw =
+2 m/s case with 10,000 runs, dashed line represents approximated

apogee timings.

102/136



NUMERICAL INVESTIGATION OF MOMENTS OF INERTIA’S UNCERTAINTY

EFFECTS ON LAPAN RX-200C ROCKET

CHAPTER 5

SUMMARY, CONCLUSION,

RECOMMENDATION

5.1 Summary

In this thesis, LAPAN’s RX-200C will be chosen as the model of interest. The

primary objective of this thesis is the sensitivity analysis of the rocket’s dynamics

under moments of inertia uncertainties; specifically in terms of the impact point

and the preliminary stability analysis. The Monte Carlo method is performed to

reveal patterns due to variations in the moments of inertia.

The rocket’s aerodynamic coefficients are generated using Missile DATCOM.

he following steps are done in MATLAB and Simulink to support the numerical

simulation:

• Mass profile estimation;

• Thrust profile generation

• Atmosphere and gravity modeling;

• Dynamics modeling;

• Moments of inertia uncertainty.

The moments of inertia uncertainty is generated based on the normal distri-

bution in which two types of uncertainty, constant and noise uncertainty, are con-

sidered. Considered in the simulations are also four magnitudes of step sidewind

velocity disturbance and three standard deviations. For each simulation run, only

one of moments inertia will be exposed to uncertainty to isolate their individual

influences. Each case will be run 500 times. In addition, the simulation with vw
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= 2 m/s will also be run 10,000 times. The results are visualized using MATLAB

and Python through the Seaborn library.

The following indicators are used to analyze the simulation results:

• Nonparametric data analysis using kernel density estimation for univariate

and bivariate distribution;

• Normal distribution parametric estimation;

• Visual interpretation of the trajectory of the angle of attack and sideslip

angle.

5.2 Conclusion

The conclusion of this thesis will be categorized into several sections:

• Indicators’ Averages

When compared to the nominal values, the average final xy positions and

maximum altitude only differ by a small amount for all of the cases except

for simulations with vw = +3 m/s where the final y averages differ more than

10 m.

• Indicator’s Spread with Uncertainty and vw = 0 m/s

For a symmetrical rocket without thrust misalignment and sidewind distur-

bance the rocket will only move in the longitudinal plane. Maximum spread

in range and altitude of 1.1 m and 2.5 m with 10% Iyy constant uncertainty.

In this case, no value of Ixx or Izz can affect the rocket’s dynamics and no

value of Iyy can induce any lateral-directional motion. Therefore, sidewind

disturbance needs to be introduced to produce comparable results between

the moments of inertia.

• Indicator’s Spread with Uncertainty and Non-Zero Wind Disturbance

As illustrated in Fig. 5.1, it can be concluded for all indicators that:

– The uncertainty in the indicators increases as the the moments of iner-

tia’s uncertainty σp increases.
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Figure 5.1: Indicators’ spread comparison over various variables.
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– Iyy shares Izz the same spread characteristics;

– Ixx creates the the largest spread;

– The constant uncertainty creates the larger spread when compared to

the noise uncertainty.

Further, the comparison between the indicators’ maximum spread shows that

for:

– Final x (σx):

∗ Ixx: 34 m (Constant, 10% Ixx Unc. with vw = 3 m/s)

∗ Iyy & Izz: 17 m (Constant, 10% Iyy Unc. with vw = 3 m/s)

– Final y (σy):

∗ Ixx: 123 m (Constant, 10% Ixx Unc. with vw = 3 m/s)

∗ Iyy & Izz: 45 m (Constant, 10% Iyy Unc. with vw = 3 m/s)

– Max. H (σH):

∗ Ixx: 53 m (Constant, 10% Ixx Unc. with vw = 3 m/s)

∗ Iyy & Izz: 11m (Noise, 10% Izz Unc. with vw = 1 m/s)

• Trajectory Distributions

The distributions of the final y positions and maximum altitude over all of

the cases resemble a normal distribution. However, multi-modalities can be

found in the distributions of the final x positions, especially:

– In simulations where vw = +2 m/s;

– All Ixx uncertainties.

For all of the cases, Iyy and Izz appear to produce similar distribution char-

acteristics.

• 500 vs 10,000 Monte Carlo Simulations

The 10,000 Monte Carlo runs were performed for the simulations with vw =

+2 m/s where multi-modalities occur the most. Although the distributions

of the final xy are more distinguishable with 10,000 runs (e.g. Fig. 5.2),
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Figure 5.2: Impact point distribution from 10% Noise Ixx unc.
between 500 and 10,000 Monte Carlo Runs

the conclusion that can be drawn is still the same as the 500 runs. The

multi-modalities still exist and are found to be more noticeable.

There is also no difference in terms of the maximum altitude and the stability

of the rocket. In other words, 500 Monte Carlo runs are good enough for the

simulations with vw = +2 m/s. However, this still might not be the case for

vw = +1 m/s and 3 m/s.

• Angle of Attack

None of the uncertainties causes any significant change in the stability and

trajectory of the angle of attack over all of the simulation cases. The maxi-

mum angle of attack of about 4.7 deg occurs right after launch. The rocket

then maintains asymptotic stability close to zero in all of the simulation cases.

• Sideslip Angle

As a whole, the sideslip angle trajectories follow the nominal trajectory pro-

files but with a change in the oscillation phase and amplitude.

Over all of the cases, it can be concluded that:

– As σp increases, the range of the oscillation phase and amplitude in-

creases with:
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∗ Maximum Phase range: 20 s

∗ Maxumum Amplitude range: 0.5 deg

– There is no sign of asymptotic stability. However, the sideslip angle is

contained between ±1 deg over the whole flight;

– Iyy and Izz appear to give the same effects to the sideslip angle trajec-

tories.

There are also some trajectory outliers that may drift/flip into the opposite

direction, when:

– The number of outliers increases with σp;

– With an increase in vw:

∗ Ixx: The number of outliers increases;

∗ Iyy and Izz: The number of outliers decreases.

– Across uncertainty types:

∗ Ixx: outliers occur often with constant uncertainty but hardly with

noise uncertainty;

∗ Iyy and Izz: no difference between uncertainty types.

5.3 Recommendation

Based on the outcome of this thesis, several recommendations can be made:

• The effects of uncertainties on the rocket’s structural integrity.

• Design a practical adaptive control system design that can compensate for

the moments of inertia uncertainty or any uncertainty in general.

• A more realistic wind model and uncertainty model can be utilized to better

simulate a real-world situation.

• Increasing the number of Monte Carlo simulations could give more insight

and a better confidence level to the resulting data. However, a Monte Carlo

simulation can sometimes be computationally demanding with the resulting
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file size growing quickly. Although the required time to process all of the

simulations will vary with the available computational power, the output file

size will relatively stay the same across different machines. The size of a saved

file containing 8 vector states from 10000 simulations with an approximate

total flight time of 95 s with 0.02 s fixed time step is approximately 7 GB in

size. Therefore, various means such as proper ODE solver, a more efficient

code, or the utilization of cloud computing are recommended.

• A more objective indicator of a Monte Carlo simulation on the stability and

distribution of the whole nonlinear flight can be beneficial. This can also

be achieved by employing machine learning to detect and relate patterns

between various parameters.
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APPENDIX A

TECHNICAL DRAWING AND MASS

PROFILE ESTIMATION METHODS

Technical Drawing
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Mass Estimation

The mass equation is linearly approximated by:

m(t) =

(
me −mf

tburn

)
t+mf (A.1)

with

me = mf −mfuel (A.2)

where

• mf , me, and mfuel ≜ Wet mass, dry mass, and fuel mass of the rocket,

respectively;

• tburn ≜ Motor burn time.

Center of Gravity Estimation

The center of gravity equation is linearly approximated by:

xcg(t) =

(
xcge − xcgf

tburn

)
t+ xcgf (A.3)

with

xcge =
mfxcgf +

(
−mfuelxcgfuel

)
mf + (−mfuel)

(A.4)

where

• xcge and xcgf ≜ Rocket’s center of gravity position at burnout and fully-fueled

condition;

• mfuel and xcgfuel ≜ Initial fuel’s mass and center of gravity position.

The center of gravity of the fuel is shown in Fig. A.1 where we have assumed

the fuel to be a homogeneous thick-walled hollow cylinder that has its center of

gravity at half its length and radius.
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xf

xfuel
x

y

lfuel

Figure A.1: Illustration of the center of gravity positions.

Inertia Estimation

Inertia Definition

The inertia tensor of a rigid body about its center of gravity G1 can be defined as:

I =

 Ixx −Ixy −Ixz
−Ixy Iyy −Iyz
−Ixz −Iyz Izz

 (A.5)

with

Ixx =

∫
m

(y2 + z2)dm

Iyy =

∫
m

(x2 + z2)dm

Izz =

∫
m

(x2 + y2)dm

(A.6)

and

Ixy = Iyx =

∫
m

xydm

Ixz = Izx =

∫
m

xzdm

Iyz = Izy =

∫
m

yzdm

(A.7)
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where

• Ixx, Iyy, and Izz ≜ The mass moment of inertia in x-, y-, and z-axis, respec-

tively;

• Ixz, Ixy, and Iyz ≜ The products of inertia in xz-, xy-, and yz-plane, respec-

tively.

• m ≜ The mass of the rigid body;

• x, y, and z ≜ The position of the rigid body relative to G in x, y, and z-axis.

Due to the integral addition property of the moment inertia from Eq. A.6, the

moment of inertia of a fully-fueled rocket can be rewritten as (i.e. for Ixxf
)

Ixxf
=

(∫
m

(y2 + z2)dm

)
f

=

(∫
m

(y2 + z2)dm

)
e

+

(∫
m

(y2 + z2)dm

)
fuel

= Ixxe + Ixxfuel

(A.8)

where the subscripts f , e, and fuel indicate the inertia of the fully-fueled rocket,

burnout rocket, and rocket fuel. Solving for Ixxe

Ixxe = Ixxf
− Ixxfuel

(A.9)

Following the previous derivations from the inertia definition on Eq. A.5 the

inertia Ixxe in Eq. A.9 is taken about the point G1 which is the center of gravity

of the fully-fueled rocket. The same exact calculations can also be done to the

products of inertia which leads us to the generalization

[Ie]G1 = If − [Ifuel]G1 (A.10)

The burnout inertia Ie about its center of gravity can then be redefined using

parallel axis theorem as

Ie = [If ]G2 − [Ifuel]G2 (A.11)
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where we moved the reference point for the inertia tensors to the burnout

rocket’s center of gravity point G2.

Fuel’s Inertia

The formula for the fuel’s inertia about its center of gravity assuming the fuel to

be a homogenous thick-walled hollow cylinder with a radius r, length l, and mass

m is given by

Ifuel =


1
2
m(r22 + r22) 0 0

0 1
12
m(3(r21 + r22) + l2) 0

0 0 1
12
m(3(r21 + r22) + l2)

 (A.12)

Parallel Axis Theorem

Knowing the inertia tensor of a rigid body about its center of gravity, we can

recalculate the inertia of the rigid body about any arbitrary point using the parallel

axis theorem. It is noted that the second coordinate axes must be parallel relative

to the initial axes. Calculating an inertia tensor about a new point G2, the parallel

axis theorem for the moment of inertia is then given by

[Ixx]G2 = Ixx +m((∆y)2 + (∆z)2)

[Iyy]G2 = Iyy +m((∆x)2 + (∆z)2)

[Izz]G2 = Izz +m((∆x)2 + (∆y)2)

(A.13)

where ∆x, ∆y, and ∆z are the distance between point 1 & 2 on x, y, and z-axis

with m the rigid body’s mass. Next, the parallel axis theorem for the products of

inertia is given by

[Ixy]G2 = [Iyx]G2 = Ixy +m∆x∆y

[Ixz]G2 = [Izx]G2 = Ixz +m∆x∆z

[Iyz]G2 = [Izy]G2 = Iyz +m∆y∆z

(A.14)
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Interpolation

The inertia equation is linearly approximated by

I(t) =

(
Ie − If
tburn

)
t+ If (A.15)
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APPENDIX B

MATLAB SCRIPTS AND MISSILE DATCOM

FILES

DATCOM xcg Iterator Script

Rocket Data Initialization

Monte Carlo Script: Constant Uncertainty

Monte Carlo Script: Noise Uncertainty

Missile DATCOM Input File

Missile DATCOM Output File
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